metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 칸토스 남여 기능성 다이어트 지압슬리퍼 5. 신여성자갈_240 온누리산업
- text: 국산 헤라칸 케나프 케냐프 발 발바닥 지압 건강 슬리퍼 실내화 연핑크(M) 예일마켓
- text: 풀리오 종아리마사지기 V3 디와이shop
- text: 풋 브러쉬 발각질 제거 마사지 큐오랩
- text: 마사지 실내 발지압매트 돌지압판 50x200CM보보보생꽃롱 도치글로벌
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.9710123383380407
name: Metric
SetFit with mini1013/master_domain
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: mini1013/master_domain
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 8 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
6.0 |
|
1.0 |
|
5.0 |
|
4.0 |
|
0.0 |
|
3.0 |
|
7.0 |
|
2.0 |
|
Evaluation
Metrics
Label | Metric |
---|---|
all | 0.9710 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_lh11")
# Run inference
preds = model("풋 브러쉬 발각질 제거 마사지 큐오랩")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 9.9325 | 21 |
Label | Training Sample Count |
---|---|
0.0 | 50 |
1.0 | 50 |
2.0 | 50 |
3.0 | 50 |
4.0 | 50 |
5.0 | 50 |
6.0 | 50 |
7.0 | 50 |
Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0159 | 1 | 0.4383 | - |
0.7937 | 50 | 0.2003 | - |
1.5873 | 100 | 0.0636 | - |
2.3810 | 150 | 0.0158 | - |
3.1746 | 200 | 0.0239 | - |
3.9683 | 250 | 0.0153 | - |
4.7619 | 300 | 0.0004 | - |
5.5556 | 350 | 0.0023 | - |
6.3492 | 400 | 0.0005 | - |
7.1429 | 450 | 0.0002 | - |
7.9365 | 500 | 0.0001 | - |
8.7302 | 550 | 0.0001 | - |
9.5238 | 600 | 0.0001 | - |
10.3175 | 650 | 0.0001 | - |
11.1111 | 700 | 0.0001 | - |
11.9048 | 750 | 0.0001 | - |
12.6984 | 800 | 0.0 | - |
13.4921 | 850 | 0.0001 | - |
14.2857 | 900 | 0.0001 | - |
15.0794 | 950 | 0.0001 | - |
15.8730 | 1000 | 0.0 | - |
16.6667 | 1050 | 0.0001 | - |
17.4603 | 1100 | 0.0 | - |
18.2540 | 1150 | 0.0001 | - |
19.0476 | 1200 | 0.0001 | - |
19.8413 | 1250 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}