master_cate_lh19 / README.md
mini1013's picture
Push model using huggingface_hub.
e4800ac verified
metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
  - metric
pipeline_tag: text-classification
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: '[저소음 미세입자] 오므론 네블라이저 NE-C803  꿈꾸는약국'
  - text: 일동제약 케어리브 밴드 M 중형 10매입 약국용 3_중형 M 50 이웃사랑팜
  - text: >-
      퀸사이즈 병원침대/환자용침대 매트리스/고탄성 병원용 접이식 마사지 지압 의료용 매트 두께 7cm_베이지색 평매트리스_1400mm X
      2000mm(더블사이즈) 메디칼베드마트
  - text: 일동제약 케어리브 밴드 중형 M 50매입 하이맘(중외제약)_하이맘밴드 아쿠아 혼합형 12 테크노 제일약국
  - text: '[하프클럽/제일케어]웰팜스 의료기기 - 의료용 가위 1개  하프클럽'
inference: true
model-index:
  - name: SetFit with mini1013/master_domain
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: metric
            value: 0.9570833333333333
            name: Metric

SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
2.0
  • '세운 네라톤카테타 #1116 라텍스 멸균 100개 팩 6번 12fr 4.0mm0 트리비즈니스'
  • '세운 바로박(Barovac) PS200C 단위:1개 (주)엠디오씨'
  • '의무실 성인용 고무밴드 네블라이저 마스크 호흡기 흡입마스크 기관지 인사이트쇼핑몰'
1.0
  • 'JW중외제약 하이맘밴드 프리미엄 2매 이지덤(대웅제약)_이지덤씬 2매(+가위) 테크노 제일약국'
  • '메디폼 친수성 폼드레싱 10x10cm (5mm) (2mm) 10매입 1박스 5mm 주식회사 엠퍼러'
  • '메나리니 더마틱스 울트라 겔 15g 1개. 릴리뷰티'
0.0
  • '약국 에탄올스왑 일회용 알콜솜 에프에이 이올스왑 알콜스왑 소독솜 1박스 다팜메디'
  • '[유한양행] 해피홈 소독용 알콜스왑알콜솜 100매입 2개 [0001]기본상품 CJONSTYLE'
  • '일회용 알콜솜 알콜스왑 소독 약국 바른케어 개별포장100매 바른케어 플러스 알콜솜 100매 로그엠(LOGM)'
4.0
  • '가주 비멸균 설압자 1통(100개) 혀누르개 목설압자 의료용 병원용 더블세이프 MinSellAmount 이원헬스케어'
  • '의료용 겸자 12.5cm /곡 모스키토 켈리 포셉 SJ헬스케어'
  • '개부밧드6절(뚜껑있는밧드)소독통/개무밧드/사각트레이/트레이밧드/거어즈캔 신동방메디칼'
3.0
  • '일회용 베드 위생시트 부직포시트 침대커버 1롤 50장 80x180cm 비방수(고급형) 80x180 50장/롤 심비오시스'
  • '부직포자루,육수보자기,다시백,거름망 45x50-300장 봉제 지우씨'
  • '병원침대/환자용침대 매트리스/고탄성 접이식 마사지 지압 의료용 매트 두께 9cm_밤색 평매트리스_900mm X 1900mm 메디칼베드마트'

Evaluation

Metrics

Label Metric
all 0.9571

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_lh19")
# Run inference
preds = model("[저소음 미세입자] 오므론 네블라이저 NE-C803  꿈꾸는약국")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 3 10.084 20
Label Training Sample Count
0.0 50
1.0 50
2.0 50
3.0 50
4.0 50

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (20, 20)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.025 1 0.4162 -
1.25 50 0.2435 -
2.5 100 0.0066 -
3.75 150 0.0054 -
5.0 200 0.0001 -
6.25 250 0.0 -
7.5 300 0.0 -
8.75 350 0.0 -
10.0 400 0.0 -
11.25 450 0.0 -
12.5 500 0.0 -
13.75 550 0.0 -
15.0 600 0.0 -
16.25 650 0.0 -
17.5 700 0.0 -
18.75 750 0.0 -
20.0 800 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}