|
--- |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: 고린GORIN 버튼식 자전거 링자물쇠 도난방지 일본 발매 GR520-SL 스포츠/레저>자전거>자전거용품>자물쇠 |
|
- text: Race Face 좁은 와이드 신치 체인링 시마노 12단 스피드 30t 스포츠/레저>자전거>자전거부품>체인 |
|
- text: 폭스레이싱 프리 저지 롱프리 팬츠 세트 179 195M 자전거의류 라이딩복 싸이클상의 바지 7부소매 스포츠/레저>자전거>자전거의류/잡화>상하세트 |
|
- text: 브레이크호스 브레이크 유압 케이블 오일 스포츠/레저>자전거>자전거부품>브레이크 |
|
- text: 사일런스 반팔져지 에어로핏 스포츠/레저>자전거>자전거의류/잡화>상의 |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
library_name: setfit |
|
inference: true |
|
base_model: mini1013/master_domain |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 1.0 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 4 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 1.0 | <ul><li>'시마노 SHIMANO 크랭크 세트 12s 32T FC-M6120-1 EFCM61201EXA2 스포츠/레저>자전거>자전거부품>변속기'</li><li>'트레벨로 접이식 폴딩 실내자전거거치대 스포츠/레저>자전거>자전거부품>스탠드'</li><li>'MTB 포크 자전거 서스펜션 앞 26 27 5 충격흡수 Fork 쇼바 합금 스포츠/레저>자전거>자전거부품>프레임/포크'</li></ul> | |
|
| 2.0 | <ul><li>'파크툴 106 워크 트레이 정비대 액세서리 스포츠/레저>자전거>자전거용품>공구'</li><li>'비엠웍스 로드 자전거 물통 컨투어 750 32032038 스포츠/레저>자전거>자전거용품>케이지'</li><li>'RBRL 자갈 자전거 윙 플랫 핸들 로드 펜더 퀵릴리즈 700c 머드가드 스포츠/레저>자전거>자전거용품>흙받이'</li></ul> | |
|
| 0.0 | <ul><li>'엠비에스코퍼레이션 엘파마 벤토르 V2000 MTB 자전거 2022년 스포츠/레저>자전거>자전거/MTB>MTB'</li><li>'QUAX 온리원 외발자전거 스포츠/레저>자전거>자전거/MTB>특수자전거'</li><li>'ATECX 컴포트 2700D 유사MTB 2023년 스포츠/레저>자전거>자전거/MTB>유사MTB'</li></ul> | |
|
| 3.0 | <ul><li>'라이딩 백팩 대용량 방수 오토바이 헬멧 가방 바이크 스포츠/레저>자전거>자전거의류/잡화>배낭'</li><li>'Castelli 뉴 카스텔리 아리아 여성 방풍 사이클링 바람 조끼 DARK 스포츠/레저>자전거>자전거의류/잡화>상의'</li><li>'ENDURANCE 엔듀런스 지구력 저스틴 - 조끼 322109 스포츠/레저>자전거>자전거의류/잡화>상의'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 1.0 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_sl25") |
|
# Run inference |
|
preds = model("사일런스 반팔져지 에어로핏 스포츠/레저>자전거>자전거의류/잡화>상의") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 4 | 8.5714 | 21 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0.0 | 70 | |
|
| 1.0 | 70 | |
|
| 2.0 | 70 | |
|
| 3.0 | 70 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (256, 256) |
|
- num_epochs: (30, 30) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 50 |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- l2_weight: 0.01 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0182 | 1 | 0.4882 | - | |
|
| 0.9091 | 50 | 0.4972 | - | |
|
| 1.8182 | 100 | 0.3608 | - | |
|
| 2.7273 | 150 | 0.0243 | - | |
|
| 3.6364 | 200 | 0.0 | - | |
|
| 4.5455 | 250 | 0.0 | - | |
|
| 5.4545 | 300 | 0.0 | - | |
|
| 6.3636 | 350 | 0.0 | - | |
|
| 7.2727 | 400 | 0.0 | - | |
|
| 8.1818 | 450 | 0.0 | - | |
|
| 9.0909 | 500 | 0.0 | - | |
|
| 10.0 | 550 | 0.0 | - | |
|
| 10.9091 | 600 | 0.0 | - | |
|
| 11.8182 | 650 | 0.0 | - | |
|
| 12.7273 | 700 | 0.0 | - | |
|
| 13.6364 | 750 | 0.0 | - | |
|
| 14.5455 | 800 | 0.0 | - | |
|
| 15.4545 | 850 | 0.0 | - | |
|
| 16.3636 | 900 | 0.0 | - | |
|
| 17.2727 | 950 | 0.0 | - | |
|
| 18.1818 | 1000 | 0.0 | - | |
|
| 19.0909 | 1050 | 0.0 | - | |
|
| 20.0 | 1100 | 0.0 | - | |
|
| 20.9091 | 1150 | 0.0 | - | |
|
| 21.8182 | 1200 | 0.0 | - | |
|
| 22.7273 | 1250 | 0.0 | - | |
|
| 23.6364 | 1300 | 0.0 | - | |
|
| 24.5455 | 1350 | 0.0 | - | |
|
| 25.4545 | 1400 | 0.0 | - | |
|
| 26.3636 | 1450 | 0.0 | - | |
|
| 27.2727 | 1500 | 0.0 | - | |
|
| 28.1818 | 1550 | 0.0 | - | |
|
| 29.0909 | 1600 | 0.0 | - | |
|
| 30.0 | 1650 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.2.0a0+81ea7a4 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |