master_item_ac / README.md
mini1013's picture
Push model using huggingface_hub.
f3a1475 verified
---
base_model: klue/roberta-base
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: '[자체제작] 14k 콩사다리 체인 반지 핑크_D style(1푼 굵기)_10호 (주)제이디아이인터내셔널'
- text: 실리콘 동전 지갑 심플 캐릭터 [on] 블랙캣(동전지갑) 비150
- text: 체크 남자 베레모 아빠 모자 헌팅캡 패션 빵모자 외출 베이지체크 (4JS) 포제이스
- text: TIMBERLAND 남성 앨번 6인치 워터프루프 워커부츠_TB0A1OIZC641 070(250) 비츠컴퍼니
- text: 라인댄스화 헬스화 스포츠 여성 재즈화 댄스화 볼룸 모던 미드힐 37_블랙 스트레이트 3.5cm/굽(메쉬) 사랑옵다
inference: true
model-index:
- name: SetFit with klue/roberta-base
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.9385943021823656
name: Metric
---
# SetFit with klue/roberta-base
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [klue/roberta-base](https://huggingface.co/klue/roberta-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [klue/roberta-base](https://huggingface.co/klue/roberta-base)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 17 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.0 | <ul><li>'남녀공용 멀티스카프 목토시 반다나 헤어밴드 두건 블랙 비오는밤'</li><li>'후드 모자 귀달이 겨울 털모자 동물 목돌이 03.브라운 뿔샵'</li><li>'햇빛 뒷목가리개 메쉬 통풍 선가드 자외선차단썬캡가드 그늘모자 쿨메쉬모자_그레이 에스더블유컴퍼니'</li></ul> |
| 9.0 | <ul><li>'[LAP](강남점)아델라 핸들 미니 크로스백 (AP7AB208) 제트블랙(ZB)_FREE 신세계백화점'</li><li>'파스텔슬링백 힙색 미니 크로스 숄더백 그린 김후철'</li><li>'[메트로시티]봉봉백 클러치백 미듐 M233MQ3852Z 에이케이에스앤디 (주) AK인터넷쇼핑몰'</li></ul> |
| 15.0 | <ul><li>'크리스마스 뱃지 브로치 배지 19종 세트 및 낱개 봉제 사슴 5 구매대행 이음'</li><li>'오드스튜디오 ODDSTUDIO 베이직 니트 체크 머플러 - 21COLOR 블랙 CS스페이스'</li><li>'넥케이프 넥커프스 페이크카라 레이어드카라 셔츠카라 1-카라-화이트 행복나라'</li></ul> |
| 13.0 | <ul><li>'펄 쥬얼리 보석함 여행용 포켓 미니 악세사리 보관함 케이스 C타입-베이비핑크 제일사'</li><li>'[갤러리아] [비앤비골드] 14K 촘촘볼 블루큐빅 도넛링 반지 SRS39135 14K 화이트골드_1호 한화갤러리아(주)'</li><li>'미니골드 김천점 14K 18K 트레버 커플링 남자 여자 금반지 RJUC4047 RJUC4048 베이직하고 심플한 디자인 여자_14K옐로우골드 미니골드 김천점'</li></ul> |
| 1.0 | <ul><li>'[베어파우](신세계강남점)(BEARPAW) 남성 털 슬리퍼 MARY MENS 블랙 K814001ND-M BLACK (K814001ND)_280 주식회사 에스에스지닷컴'</li><li>'노스페이스 뮬 슬립온 브이모션 - NS93P53A 블랙_290 롯데백화점2관'</li><li>'사무실 남자 슬리퍼 가죽 남성 빅 사이즈 48 47 사무용 신입생코디실내화 blue_38 리마106'</li></ul> |
| 7.0 | <ul><li>'부드러운 슈트리 신발주름방지 신발모양유지 신발지탱 225 245 mm 커피와 기저귀'</li><li>'[갓성비] 꿀조합 애니비츠 세트 캐릭터 신발 악세사리 포켓몬 스누피 커비편의점SET 애니팝'</li><li>'MSMAX Jazz Dance Shoes Split Sole Men Dancing Sneakers High Top Boots for Women Silver 10.5 M Silver_11 Narrow 디아트479'</li></ul> |
| 11.0 | <ul><li>'캐리어 수트케이스 양면 개방형 기내용 바퀴가방 화이트_26인치 피스온트레이드'</li><li>'클래시 패스 커버여권 포트월렛 포트파우치 파우치 여행지갑 포트 케이스 (01 레모니) 주식회사유마켓'</li><li>'클래시패스커버 (안티스키밍 여권케이스) (10블랙) JTEC'</li></ul> |
| 4.0 | <ul><li>'고급 안경집 선글라스집 휴대용 케이스 파우치 하드 보관함 블랙 다온마켓'</li><li>'고급 올 칼라 크리스탈 다중 비즈 안경 줄 마스크 걸이 상품선택_블랙(골드) 리미몰'</li><li>'아이업꽈배기인조가죽안경줄10p세트선글라스줄 마니또야'</li></ul> |
| 14.0 | <ul><li>'[갤러리아] [Prada]프라다 23FW 사피아노 반지갑 블랙 2MO004 QME F0002 2MO004 QME F0002 FREE 한화갤러리아(주)'</li><li>'닥스 액세서리 [OSCAR][오스카][제네시스 전용] 네이비 프리미엄 토고 수입 가죽 차키케이스 DBHO2F573N2 XXX 주식회사 LF'</li><li>'톰브라운 23SS 남성 페블그레인 머니클립 블랙 MAW025L 00198 001 ONE SIZE 주식회사 이지겟인터내셔널'</li></ul> |
| 0.0 | <ul><li>'[롯데백화점]닥스ACC [선물포장/쇼핑백동봉] [GRIDⅡ] 브라운 패턴배색 소가죽 클러치백 DBBA2F266W3 롯데백화점_'</li><li>'만다리나덕 토트백 PIETRO P4T05163 은하수몰'</li><li>'내셔널지오그래픽 N245ATO510 베이직 에코백 BLACK TNSC'</li></ul> |
| 16.0 | <ul><li>'올림머리 메탈프레임 반머리 꼬임 집게핀 114 유광스틸 7cm 이지 아트 프로덕션 (EG ART PRODUCTION)'</li><li>'꼬임 메탈프레임 반머리 올림머리 집게핀 114 무광로즈 7cm 네오몰'</li><li>'폼폼 방울털 장식 미니 머리끈 포인트 헤어끈 퍼플 1P 은강'</li></ul> |
| 8.0 | <ul><li>'기모 롱 오버 니삭스 겨울 스타킹 다리 워머 롱삭스 롱양말 무릎 니하이 브라운 린이팸'</li><li>'최대12켤레 남여 국산양말 장목/니트/균일가/신상/중목/발목/수면/학생 37~38_37.여)털실 중목_4켤레 / 버건디 투투삭스'</li><li>'NY코튼클럽 5켤레 국산 극세사 기모 롱 무압박 임산부 수면양말 W8001-여성-카멜5족 GSSHOP_'</li></ul> |
| 5.0 | <ul><li>'[한국금거래소] 순금 카네이션 배지 1.875g 부모님 추석 명절 생신 생일 기념일 기념 축하 감사선물 주식회사 한국금거래소디지털에셋'</li><li>'[한국금거래소]한국금거래소 순금 용 37.5g [순금24K] 롯데아이몰'</li><li>'한국금거래소 실버바 1kg(1000g) 주식회사 한국금거래소디지털에셋'</li></ul> |
| 10.0 | <ul><li>'캠퍼 브루투스 트렉 첼시 앵클부츠 346335 EU 39 주식회사 수비르글로벌커머스(SUBIR Global Commerce)'</li><li>'슈콤마보니 워커 부츠 DG3CW22519BLK 블랙_250 롯데쇼핑(주) 프리미엄아울렛 타임빌라스'</li><li>'말랑 쿠키 거실화 실내화 거실슬리퍼 실내슬리퍼 LWS 그레이265mm 생활공작소365'</li></ul> |
| 6.0 | <ul><li>'BOXY 박시 워치와인더 BWS-S / BWS-F 1구 아답터1개로 쌓아서 사용가능 BWS-S(DG)아답터미포함 와치닷컴'</li><li>'지샥 GA-2100 2110 지얄오크 베젤 밴드 일체형 용두 메탈 우레탄밴드 커스텀 옵션5:실버+블랙베젤_1.일반버클_화이트 방울방울'</li><li>'스타샵 카시오 MRW-200H-2B2 남성 손목시계 c57 선택19. AW-49H-1B 스타샵'</li></ul> |
| 3.0 | <ul><li>'남자 멜빵 2 5CM 남성 및 여성 서스펜더 클립 사이드 홀스터 스타일 탄성 백 서스펜더 05 밝은 빨간색 헬로우스토어'</li><li>'멜빵 소형멜빵 용 멜빵 어린이멜빵 멜빵 맬빵 MinSellAmount 모루모루'</li><li>'[닥스 액세서리] [23FW] DBBE3F097BK 여성벨트DD Symbol 블랙 DD메탈릭 골드 버클 소 XXX '</li></ul> |
| 12.0 | <ul><li>'미니 토시 사무용 광목 자수 팔토시 레드로즈 다솜이네'</li><li>'백화점 여성 남성 천연 양가죽 장갑 스마트폰 터치 털 손가락 겨울 방한 가죽 커플 장갑 2.여성용/스웨이드/차콜 힐렉스'</li><li>'[선물포장] 울 캐시미어혼방 핑거홀 장갑 JAGV2F310G2,JAGV2F311W2,JAGV2F312E2,JAGV2F313/질스튜어트 그린 롯데쇼핑(주)'</li></ul> |
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.9386 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_item_ac")
# Run inference
preds = model("실리콘 동전 지갑 심플 캐릭터 [on] 블랙캣(동전지갑) 비150")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 3 | 10.2537 | 30 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 450 |
| 1.0 | 650 |
| 2.0 | 650 |
| 3.0 | 150 |
| 4.0 | 300 |
| 5.0 | 120 |
| 6.0 | 224 |
| 7.0 | 350 |
| 8.0 | 100 |
| 9.0 | 467 |
| 10.0 | 500 |
| 11.0 | 600 |
| 12.0 | 150 |
| 13.0 | 450 |
| 14.0 | 400 |
| 15.0 | 1000 |
| 16.0 | 250 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:-----:|:-------------:|:---------------:|
| 0.0009 | 1 | 0.407 | - |
| 0.0469 | 50 | 0.3772 | - |
| 0.0939 | 100 | 0.3062 | - |
| 0.1408 | 150 | 0.2861 | - |
| 0.1878 | 200 | 0.2513 | - |
| 0.2347 | 250 | 0.2284 | - |
| 0.2817 | 300 | 0.1952 | - |
| 0.3286 | 350 | 0.149 | - |
| 0.3756 | 400 | 0.1154 | - |
| 0.4225 | 450 | 0.1042 | - |
| 0.4695 | 500 | 0.0802 | - |
| 0.5164 | 550 | 0.0765 | - |
| 0.5634 | 600 | 0.0767 | - |
| 0.6103 | 650 | 0.0475 | - |
| 0.6573 | 700 | 0.0535 | - |
| 0.7042 | 750 | 0.0293 | - |
| 0.7512 | 800 | 0.0388 | - |
| 0.7981 | 850 | 0.0156 | - |
| 0.8451 | 900 | 0.0348 | - |
| 0.8920 | 950 | 0.0241 | - |
| 0.9390 | 1000 | 0.023 | - |
| 0.9859 | 1050 | 0.0166 | - |
| 1.0329 | 1100 | 0.0124 | - |
| 1.0798 | 1150 | 0.0139 | - |
| 1.1268 | 1200 | 0.0122 | - |
| 1.1737 | 1250 | 0.0111 | - |
| 1.2207 | 1300 | 0.0062 | - |
| 1.2676 | 1350 | 0.0106 | - |
| 1.3146 | 1400 | 0.0112 | - |
| 1.3615 | 1450 | 0.0137 | - |
| 1.4085 | 1500 | 0.0154 | - |
| 1.4554 | 1550 | 0.0185 | - |
| 1.5023 | 1600 | 0.0248 | - |
| 1.5493 | 1650 | 0.0128 | - |
| 1.5962 | 1700 | 0.018 | - |
| 1.6432 | 1750 | 0.0013 | - |
| 1.6901 | 1800 | 0.0151 | - |
| 1.7371 | 1850 | 0.0208 | - |
| 1.7840 | 1900 | 0.0076 | - |
| 1.8310 | 1950 | 0.0138 | - |
| 1.8779 | 2000 | 0.0133 | - |
| 1.9249 | 2050 | 0.0131 | - |
| 1.9718 | 2100 | 0.0123 | - |
| 2.0188 | 2150 | 0.0165 | - |
| 2.0657 | 2200 | 0.0084 | - |
| 2.1127 | 2250 | 0.0062 | - |
| 2.1596 | 2300 | 0.0068 | - |
| 2.2066 | 2350 | 0.0023 | - |
| 2.2535 | 2400 | 0.006 | - |
| 2.3005 | 2450 | 0.0048 | - |
| 2.3474 | 2500 | 0.0016 | - |
| 2.3944 | 2550 | 0.0046 | - |
| 2.4413 | 2600 | 0.001 | - |
| 2.4883 | 2650 | 0.0022 | - |
| 2.5352 | 2700 | 0.0014 | - |
| 2.5822 | 2750 | 0.0004 | - |
| 2.6291 | 2800 | 0.0002 | - |
| 2.6761 | 2850 | 0.0004 | - |
| 2.7230 | 2900 | 0.0016 | - |
| 2.7700 | 2950 | 0.0018 | - |
| 2.8169 | 3000 | 0.0004 | - |
| 2.8638 | 3050 | 0.0001 | - |
| 2.9108 | 3100 | 0.0002 | - |
| 2.9577 | 3150 | 0.0018 | - |
| 3.0047 | 3200 | 0.0019 | - |
| 3.0516 | 3250 | 0.0001 | - |
| 3.0986 | 3300 | 0.0011 | - |
| 3.1455 | 3350 | 0.0001 | - |
| 3.1925 | 3400 | 0.0001 | - |
| 3.2394 | 3450 | 0.0002 | - |
| 3.2864 | 3500 | 0.0007 | - |
| 3.3333 | 3550 | 0.0001 | - |
| 3.3803 | 3600 | 0.0002 | - |
| 3.4272 | 3650 | 0.0001 | - |
| 3.4742 | 3700 | 0.0011 | - |
| 3.5211 | 3750 | 0.0013 | - |
| 3.5681 | 3800 | 0.0014 | - |
| 3.6150 | 3850 | 0.0001 | - |
| 3.6620 | 3900 | 0.0001 | - |
| 3.7089 | 3950 | 0.0002 | - |
| 3.7559 | 4000 | 0.0001 | - |
| 3.8028 | 4050 | 0.0014 | - |
| 3.8498 | 4100 | 0.0002 | - |
| 3.8967 | 4150 | 0.0001 | - |
| 3.9437 | 4200 | 0.0 | - |
| 3.9906 | 4250 | 0.0 | - |
| 4.0376 | 4300 | 0.0001 | - |
| 4.0845 | 4350 | 0.0002 | - |
| 4.1315 | 4400 | 0.0 | - |
| 4.1784 | 4450 | 0.0001 | - |
| 4.2254 | 4500 | 0.0 | - |
| 4.2723 | 4550 | 0.0 | - |
| 4.3192 | 4600 | 0.0003 | - |
| 4.3662 | 4650 | 0.0007 | - |
| 4.4131 | 4700 | 0.0 | - |
| 4.4601 | 4750 | 0.0001 | - |
| 4.5070 | 4800 | 0.0011 | - |
| 4.5540 | 4850 | 0.0003 | - |
| 4.6009 | 4900 | 0.0005 | - |
| 4.6479 | 4950 | 0.0001 | - |
| 4.6948 | 5000 | 0.0001 | - |
| 4.7418 | 5050 | 0.0001 | - |
| 4.7887 | 5100 | 0.0001 | - |
| 4.8357 | 5150 | 0.0 | - |
| 4.8826 | 5200 | 0.0 | - |
| 4.9296 | 5250 | 0.0 | - |
| 4.9765 | 5300 | 0.0001 | - |
| 5.0235 | 5350 | 0.0 | - |
| 5.0704 | 5400 | 0.0 | - |
| 5.1174 | 5450 | 0.0 | - |
| 5.1643 | 5500 | 0.0 | - |
| 5.2113 | 5550 | 0.0 | - |
| 5.2582 | 5600 | 0.0001 | - |
| 5.3052 | 5650 | 0.0 | - |
| 5.3521 | 5700 | 0.0 | - |
| 5.3991 | 5750 | 0.0 | - |
| 5.4460 | 5800 | 0.0 | - |
| 5.4930 | 5850 | 0.0 | - |
| 5.5399 | 5900 | 0.0 | - |
| 5.5869 | 5950 | 0.0 | - |
| 5.6338 | 6000 | 0.0 | - |
| 5.6808 | 6050 | 0.0 | - |
| 5.7277 | 6100 | 0.0 | - |
| 5.7746 | 6150 | 0.0 | - |
| 5.8216 | 6200 | 0.0 | - |
| 5.8685 | 6250 | 0.0 | - |
| 5.9155 | 6300 | 0.0001 | - |
| 5.9624 | 6350 | 0.0004 | - |
| 6.0094 | 6400 | 0.0007 | - |
| 6.0563 | 6450 | 0.0 | - |
| 6.1033 | 6500 | 0.0001 | - |
| 6.1502 | 6550 | 0.0 | - |
| 6.1972 | 6600 | 0.0001 | - |
| 6.2441 | 6650 | 0.0 | - |
| 6.2911 | 6700 | 0.0 | - |
| 6.3380 | 6750 | 0.0009 | - |
| 6.3850 | 6800 | 0.0 | - |
| 6.4319 | 6850 | 0.0001 | - |
| 6.4789 | 6900 | 0.0 | - |
| 6.5258 | 6950 | 0.0001 | - |
| 6.5728 | 7000 | 0.0 | - |
| 6.6197 | 7050 | 0.0 | - |
| 6.6667 | 7100 | 0.0 | - |
| 6.7136 | 7150 | 0.0 | - |
| 6.7606 | 7200 | 0.0001 | - |
| 6.8075 | 7250 | 0.0 | - |
| 6.8545 | 7300 | 0.0 | - |
| 6.9014 | 7350 | 0.0 | - |
| 6.9484 | 7400 | 0.0 | - |
| 6.9953 | 7450 | 0.0 | - |
| 7.0423 | 7500 | 0.0 | - |
| 7.0892 | 7550 | 0.0 | - |
| 7.1362 | 7600 | 0.0 | - |
| 7.1831 | 7650 | 0.0 | - |
| 7.2300 | 7700 | 0.0 | - |
| 7.2770 | 7750 | 0.0001 | - |
| 7.3239 | 7800 | 0.0 | - |
| 7.3709 | 7850 | 0.0 | - |
| 7.4178 | 7900 | 0.0 | - |
| 7.4648 | 7950 | 0.0 | - |
| 7.5117 | 8000 | 0.0 | - |
| 7.5587 | 8050 | 0.0 | - |
| 7.6056 | 8100 | 0.0 | - |
| 7.6526 | 8150 | 0.0024 | - |
| 7.6995 | 8200 | 0.0 | - |
| 7.7465 | 8250 | 0.0 | - |
| 7.7934 | 8300 | 0.0 | - |
| 7.8404 | 8350 | 0.0 | - |
| 7.8873 | 8400 | 0.0 | - |
| 7.9343 | 8450 | 0.0 | - |
| 7.9812 | 8500 | 0.0 | - |
| 8.0282 | 8550 | 0.0 | - |
| 8.0751 | 8600 | 0.0 | - |
| 8.1221 | 8650 | 0.0 | - |
| 8.1690 | 8700 | 0.0 | - |
| 8.2160 | 8750 | 0.0 | - |
| 8.2629 | 8800 | 0.0 | - |
| 8.3099 | 8850 | 0.0 | - |
| 8.3568 | 8900 | 0.0 | - |
| 8.4038 | 8950 | 0.0 | - |
| 8.4507 | 9000 | 0.0 | - |
| 8.4977 | 9050 | 0.0 | - |
| 8.5446 | 9100 | 0.0 | - |
| 8.5915 | 9150 | 0.0 | - |
| 8.6385 | 9200 | 0.0002 | - |
| 8.6854 | 9250 | 0.0003 | - |
| 8.7324 | 9300 | 0.0005 | - |
| 8.7793 | 9350 | 0.0001 | - |
| 8.8263 | 9400 | 0.0001 | - |
| 8.8732 | 9450 | 0.0001 | - |
| 8.9202 | 9500 | 0.0 | - |
| 8.9671 | 9550 | 0.0 | - |
| 9.0141 | 9600 | 0.0001 | - |
| 9.0610 | 9650 | 0.0001 | - |
| 9.1080 | 9700 | 0.0 | - |
| 9.1549 | 9750 | 0.0 | - |
| 9.2019 | 9800 | 0.0001 | - |
| 9.2488 | 9850 | 0.0 | - |
| 9.2958 | 9900 | 0.0 | - |
| 9.3427 | 9950 | 0.0 | - |
| 9.3897 | 10000 | 0.0 | - |
| 9.4366 | 10050 | 0.0 | - |
| 9.4836 | 10100 | 0.0 | - |
| 9.5305 | 10150 | 0.0 | - |
| 9.5775 | 10200 | 0.0 | - |
| 9.6244 | 10250 | 0.0 | - |
| 9.6714 | 10300 | 0.0 | - |
| 9.7183 | 10350 | 0.0 | - |
| 9.7653 | 10400 | 0.0 | - |
| 9.8122 | 10450 | 0.0 | - |
| 9.8592 | 10500 | 0.0016 | - |
| 9.9061 | 10550 | 0.0 | - |
| 9.9531 | 10600 | 0.0 | - |
| 10.0 | 10650 | 0.0 | - |
| 10.0469 | 10700 | 0.0003 | - |
| 10.0939 | 10750 | 0.0 | - |
| 10.1408 | 10800 | 0.0 | - |
| 10.1878 | 10850 | 0.0 | - |
| 10.2347 | 10900 | 0.0 | - |
| 10.2817 | 10950 | 0.0 | - |
| 10.3286 | 11000 | 0.0 | - |
| 10.3756 | 11050 | 0.0 | - |
| 10.4225 | 11100 | 0.0 | - |
| 10.4695 | 11150 | 0.0 | - |
| 10.5164 | 11200 | 0.0 | - |
| 10.5634 | 11250 | 0.0 | - |
| 10.6103 | 11300 | 0.0 | - |
| 10.6573 | 11350 | 0.0 | - |
| 10.7042 | 11400 | 0.0 | - |
| 10.7512 | 11450 | 0.0 | - |
| 10.7981 | 11500 | 0.0 | - |
| 10.8451 | 11550 | 0.0 | - |
| 10.8920 | 11600 | 0.0 | - |
| 10.9390 | 11650 | 0.0 | - |
| 10.9859 | 11700 | 0.0 | - |
| 11.0329 | 11750 | 0.0 | - |
| 11.0798 | 11800 | 0.0 | - |
| 11.1268 | 11850 | 0.0 | - |
| 11.1737 | 11900 | 0.0 | - |
| 11.2207 | 11950 | 0.0 | - |
| 11.2676 | 12000 | 0.0 | - |
| 11.3146 | 12050 | 0.0 | - |
| 11.3615 | 12100 | 0.0 | - |
| 11.4085 | 12150 | 0.0 | - |
| 11.4554 | 12200 | 0.0 | - |
| 11.5023 | 12250 | 0.0015 | - |
| 11.5493 | 12300 | 0.0 | - |
| 11.5962 | 12350 | 0.0 | - |
| 11.6432 | 12400 | 0.0 | - |
| 11.6901 | 12450 | 0.0 | - |
| 11.7371 | 12500 | 0.0 | - |
| 11.7840 | 12550 | 0.0002 | - |
| 11.8310 | 12600 | 0.0 | - |
| 11.8779 | 12650 | 0.0 | - |
| 11.9249 | 12700 | 0.0 | - |
| 11.9718 | 12750 | 0.0001 | - |
| 12.0188 | 12800 | 0.0 | - |
| 12.0657 | 12850 | 0.0 | - |
| 12.1127 | 12900 | 0.0 | - |
| 12.1596 | 12950 | 0.0001 | - |
| 12.2066 | 13000 | 0.0001 | - |
| 12.2535 | 13050 | 0.0 | - |
| 12.3005 | 13100 | 0.0 | - |
| 12.3474 | 13150 | 0.0001 | - |
| 12.3944 | 13200 | 0.0 | - |
| 12.4413 | 13250 | 0.0 | - |
| 12.4883 | 13300 | 0.0 | - |
| 12.5352 | 13350 | 0.0 | - |
| 12.5822 | 13400 | 0.0 | - |
| 12.6291 | 13450 | 0.0 | - |
| 12.6761 | 13500 | 0.0 | - |
| 12.7230 | 13550 | 0.0 | - |
| 12.7700 | 13600 | 0.0 | - |
| 12.8169 | 13650 | 0.0 | - |
| 12.8638 | 13700 | 0.0 | - |
| 12.9108 | 13750 | 0.0 | - |
| 12.9577 | 13800 | 0.0 | - |
| 13.0047 | 13850 | 0.0 | - |
| 13.0516 | 13900 | 0.0 | - |
| 13.0986 | 13950 | 0.0 | - |
| 13.1455 | 14000 | 0.0 | - |
| 13.1925 | 14050 | 0.0 | - |
| 13.2394 | 14100 | 0.0 | - |
| 13.2864 | 14150 | 0.0 | - |
| 13.3333 | 14200 | 0.0 | - |
| 13.3803 | 14250 | 0.0 | - |
| 13.4272 | 14300 | 0.0 | - |
| 13.4742 | 14350 | 0.0 | - |
| 13.5211 | 14400 | 0.0 | - |
| 13.5681 | 14450 | 0.0 | - |
| 13.6150 | 14500 | 0.0 | - |
| 13.6620 | 14550 | 0.0 | - |
| 13.7089 | 14600 | 0.0 | - |
| 13.7559 | 14650 | 0.0 | - |
| 13.8028 | 14700 | 0.0 | - |
| 13.8498 | 14750 | 0.0 | - |
| 13.8967 | 14800 | 0.0 | - |
| 13.9437 | 14850 | 0.0 | - |
| 13.9906 | 14900 | 0.0 | - |
| 14.0376 | 14950 | 0.0 | - |
| 14.0845 | 15000 | 0.0 | - |
| 14.1315 | 15050 | 0.0 | - |
| 14.1784 | 15100 | 0.0001 | - |
| 14.2254 | 15150 | 0.0 | - |
| 14.2723 | 15200 | 0.0 | - |
| 14.3192 | 15250 | 0.0 | - |
| 14.3662 | 15300 | 0.0 | - |
| 14.4131 | 15350 | 0.0 | - |
| 14.4601 | 15400 | 0.0 | - |
| 14.5070 | 15450 | 0.0 | - |
| 14.5540 | 15500 | 0.0 | - |
| 14.6009 | 15550 | 0.0 | - |
| 14.6479 | 15600 | 0.0 | - |
| 14.6948 | 15650 | 0.0 | - |
| 14.7418 | 15700 | 0.0 | - |
| 14.7887 | 15750 | 0.0 | - |
| 14.8357 | 15800 | 0.0 | - |
| 14.8826 | 15850 | 0.0 | - |
| 14.9296 | 15900 | 0.0 | - |
| 14.9765 | 15950 | 0.0 | - |
| 15.0235 | 16000 | 0.0 | - |
| 15.0704 | 16050 | 0.0 | - |
| 15.1174 | 16100 | 0.0 | - |
| 15.1643 | 16150 | 0.0 | - |
| 15.2113 | 16200 | 0.0 | - |
| 15.2582 | 16250 | 0.0 | - |
| 15.3052 | 16300 | 0.0 | - |
| 15.3521 | 16350 | 0.0 | - |
| 15.3991 | 16400 | 0.0 | - |
| 15.4460 | 16450 | 0.0 | - |
| 15.4930 | 16500 | 0.0 | - |
| 15.5399 | 16550 | 0.0 | - |
| 15.5869 | 16600 | 0.0 | - |
| 15.6338 | 16650 | 0.0 | - |
| 15.6808 | 16700 | 0.0 | - |
| 15.7277 | 16750 | 0.0 | - |
| 15.7746 | 16800 | 0.0 | - |
| 15.8216 | 16850 | 0.0 | - |
| 15.8685 | 16900 | 0.0 | - |
| 15.9155 | 16950 | 0.0 | - |
| 15.9624 | 17000 | 0.0 | - |
| 16.0094 | 17050 | 0.0 | - |
| 16.0563 | 17100 | 0.0 | - |
| 16.1033 | 17150 | 0.0 | - |
| 16.1502 | 17200 | 0.0 | - |
| 16.1972 | 17250 | 0.0 | - |
| 16.2441 | 17300 | 0.0 | - |
| 16.2911 | 17350 | 0.0 | - |
| 16.3380 | 17400 | 0.0 | - |
| 16.3850 | 17450 | 0.0 | - |
| 16.4319 | 17500 | 0.0 | - |
| 16.4789 | 17550 | 0.0 | - |
| 16.5258 | 17600 | 0.0 | - |
| 16.5728 | 17650 | 0.0 | - |
| 16.6197 | 17700 | 0.0 | - |
| 16.6667 | 17750 | 0.0 | - |
| 16.7136 | 17800 | 0.0 | - |
| 16.7606 | 17850 | 0.0 | - |
| 16.8075 | 17900 | 0.0 | - |
| 16.8545 | 17950 | 0.0 | - |
| 16.9014 | 18000 | 0.0 | - |
| 16.9484 | 18050 | 0.0 | - |
| 16.9953 | 18100 | 0.0 | - |
| 17.0423 | 18150 | 0.0 | - |
| 17.0892 | 18200 | 0.0 | - |
| 17.1362 | 18250 | 0.0 | - |
| 17.1831 | 18300 | 0.0 | - |
| 17.2300 | 18350 | 0.0 | - |
| 17.2770 | 18400 | 0.0 | - |
| 17.3239 | 18450 | 0.0 | - |
| 17.3709 | 18500 | 0.0 | - |
| 17.4178 | 18550 | 0.0 | - |
| 17.4648 | 18600 | 0.0 | - |
| 17.5117 | 18650 | 0.0 | - |
| 17.5587 | 18700 | 0.0 | - |
| 17.6056 | 18750 | 0.0 | - |
| 17.6526 | 18800 | 0.0 | - |
| 17.6995 | 18850 | 0.0 | - |
| 17.7465 | 18900 | 0.0 | - |
| 17.7934 | 18950 | 0.0 | - |
| 17.8404 | 19000 | 0.0 | - |
| 17.8873 | 19050 | 0.0 | - |
| 17.9343 | 19100 | 0.0 | - |
| 17.9812 | 19150 | 0.0 | - |
| 18.0282 | 19200 | 0.0 | - |
| 18.0751 | 19250 | 0.0 | - |
| 18.1221 | 19300 | 0.0 | - |
| 18.1690 | 19350 | 0.0 | - |
| 18.2160 | 19400 | 0.0 | - |
| 18.2629 | 19450 | 0.0 | - |
| 18.3099 | 19500 | 0.0 | - |
| 18.3568 | 19550 | 0.0 | - |
| 18.4038 | 19600 | 0.0 | - |
| 18.4507 | 19650 | 0.0 | - |
| 18.4977 | 19700 | 0.0 | - |
| 18.5446 | 19750 | 0.0 | - |
| 18.5915 | 19800 | 0.0 | - |
| 18.6385 | 19850 | 0.0 | - |
| 18.6854 | 19900 | 0.0 | - |
| 18.7324 | 19950 | 0.0 | - |
| 18.7793 | 20000 | 0.0 | - |
| 18.8263 | 20050 | 0.0 | - |
| 18.8732 | 20100 | 0.0 | - |
| 18.9202 | 20150 | 0.0 | - |
| 18.9671 | 20200 | 0.0 | - |
| 19.0141 | 20250 | 0.0 | - |
| 19.0610 | 20300 | 0.0 | - |
| 19.1080 | 20350 | 0.0 | - |
| 19.1549 | 20400 | 0.0 | - |
| 19.2019 | 20450 | 0.0 | - |
| 19.2488 | 20500 | 0.0 | - |
| 19.2958 | 20550 | 0.0 | - |
| 19.3427 | 20600 | 0.0 | - |
| 19.3897 | 20650 | 0.0 | - |
| 19.4366 | 20700 | 0.0 | - |
| 19.4836 | 20750 | 0.0 | - |
| 19.5305 | 20800 | 0.0 | - |
| 19.5775 | 20850 | 0.0 | - |
| 19.6244 | 20900 | 0.0 | - |
| 19.6714 | 20950 | 0.0 | - |
| 19.7183 | 21000 | 0.0 | - |
| 19.7653 | 21050 | 0.0 | - |
| 19.8122 | 21100 | 0.0 | - |
| 19.8592 | 21150 | 0.0 | - |
| 19.9061 | 21200 | 0.0 | - |
| 19.9531 | 21250 | 0.0 | - |
| 20.0 | 21300 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->