minlik's picture
Update README.md
a3caf05
|
raw
history blame
1.68 kB
metadata
title: chinese-alpaca-pro-33b-merged
emoji: 📚
colorFrom: gray
colorTo: red
sdk: gradio
sdk_version: 3.23.0
app_file: app.py
pinned: false

加入中文词表并继续预训练中文Embedding,并在此基础上继续使用指令数据集finetuning,得到的中文Alpaca-pro-33B模型。

模型转换用到的相关base及lora模型如下:

  • base-model: elinas/llama-30b-hf-transformers-4.29
  • lora-model: ziqingyang/chinese-llama-plus-lora-33b, ziqingyang/chinese-alpaca-pro-lora-33b

详情可参考:https://github.com/ymcui/Chinese-LLaMA-Alpaca/releases/tag/v5.0

使用方法参考

  1. 安装模块包
pip install sentencepiece
pip install transformers>=4.28.0
  1. 生成文本
import torch
import transformers
from transformers import LlamaTokenizer, LlamaForCausalLM

def generate_prompt(text):
    return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{text}

### Response:"""


tokenizer = LlamaTokenizer.from_pretrained('minlik/chinese-alpaca-pro-33b-merged')
model = LlamaForCausalLM.from_pretrained('minlik/chinese-alpaca-pro-33b-merged').half().to('cuda')
model.eval()

text = '第一个登上月球的人是谁?'
prompt = generate_prompt(text)
input_ids = tokenizer.encode(prompt, return_tensors='pt').to('cuda')


with torch.no_grad():
    output_ids = model.generate(
        input_ids=input_ids,
        max_new_tokens=128,
        temperature=1,
        top_k=40,
        top_p=0.9,
        repetition_penalty=1.15
    ).cuda()
output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(output.replace(prompt, '').strip())