Zebrafish-7B
Zebrafish-7B is my first model using the new merge method called Model Stock.
Zebrafish-7B is a merge of the following models using LazyMergekit:
Special thanks to Charles Goddard for the quick implementation!
π Evaluation
Nous
Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
---|---|---|---|---|---|
mlabonne/AlphaMonarch-7B π | 62.74 | 45.37 | 77.01 | 78.39 | 50.2 |
mlabonne/Zebrafish-7B π | 62.41 | 44.92 | 77.18 | 78.25 | 49.28 |
mlabonne/Beyonder-4x7B-v3 π | 61.91 | 45.85 | 76.67 | 74.98 | 50.12 |
mlabonne/NeuralBeagle14-7B π | 60.25 | 46.06 | 76.77 | 70.32 | 47.86 |
mistralai/Mistral-7B-Instruct-v0.2 π | 54.81 | 38.5 | 71.64 | 66.82 | 42.29 |
𧩠Configuration
models:
- model: mistralai/Mistral-7B-v0.1
- model: liminerity/M7-7b
- model: rwitz/experiment26-truthy-iter-0
merge_method: model_stock
base_model: mistralai/Mistral-7B-v0.1
dtype: bfloat16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/Zebrafish-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 105
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.