Edit model card

PhoneLM-1.5B is a 1.5 billion parameter decoder-only language model pre-trained on 1.1 trillion tokens.

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = 'mllmTeam/PhoneLM-1.5B'
model = AutoModelForCausalLM.from_pretrained(model_name, device_map='cuda', trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name)

inp = tokenizer("Machine Learning is ", return_tensors="pt")
inp = {k: v.to('cuda') for k, v in inp.items()}
out = model.generate(**inp, 
                     max_length=256,
                     do_sample=True,
                     temperature=0.7,
                     top_p=0.7
                     )
text = tokenizer.decode(out[0], skip_special_tokens=True)
print(text)

Model Details

  • Developed by: mllmTeam
  • Model type: PhoneLM 1.5B models are auto-regressive language models based on the transformer decoder architecture.
  • Language(s): English
  • Paper: PhoneLM Technical Report
  • Library: PhoneLM

Model Architecture

The model is a decoder-only transformer architecture with the following modifications:

Hidden Size Layers Heads Sequence Length
2560 19 16 2048
  • Position Embeddings: Rotary Position Embeddings (Su et al., 2021) applied to the first 25% of head embedding dimensions for improved throughput following Black et al. (2022). PhoneLM quantized the sin and cos values in Rotary Position Embeddings to 8-bit integers.
  • Normalization: LayerNorm (Ba et al., 2016) with learned bias terms as opposed to RMSNorm (Zhang & Sennrich, 2019).
  • Biases: We remove all bias terms from the feed-forward networks and multi-head self-attention layers, except for the biases of the query, key, and value projections (Bai et al., 2023).
  • ReLU Activation Function: ReLU(Glorot et al., 2011) activation functions are adopted in feed-forward networks.
  • Tokenizer: We use the SmolLM(Allal et al., 2024)'s tokenizer with a vocabulary size of 49,152.

Training Dataset

The training dataset PhoneLM used is comprised of a filtered mixture of open-source large-scale datasets available on the HuggingFace Hub: DCLM-baseline(Li et al., 2024), StarCoder (Li et al., 2023), OpenWebMath (Paster et al., 2023) and Dolma (Soldaini et al., 2024).

Evaluation Results

Model HellaSwag WinoGrande PIQA SciQ BoolQ ARC Easy ARC Challenge Average
PhoneLM-1.5B 66.9 63.0 77.3 88.8 65.5 69.7 39.9 67.31
Pythia-1.4B 52.0 57.2 71.1 79.2 63.2 53.9 28.3 57.84
OPT-1.3B 53.7 59.0 71.0 78.1 57.2 51.3 28.0 56.90
BLOOM-1.1B 43.0 54.9 67.2 74.6 59.1 45.4 25.6 52.83
TinyLlama-1.1B 59.1 58.9 73.0 82.3 58.6 55.7 31.0 59.80
MobileLLaMA-1.4B 56.1 59.4 73.0 81.9 56.7 55.8 30.3 59.03
MobiLlama-1B 62.2 59.3 74.8 82.8 60.3 56.4 31.7 61.07
OpenELM-1.1B 64.8 61.7 75.6 83.6 63.6 55.4 32.3 62.43
DCLM-1.4B 53.6 66.3 77.0 94.0 71.4 74.8 41.2 68.33
SmolLM-1.7B 49.6 60.9 75.8 93.2 66.0 76.4 43.5 66.49
Qwen 1.5-1.8B 60.9 60.5 74.2 89.4 66.5 59.1 34.7 63.61
Galactica-1.3B 41.0 54.4 63.8 87.7 62.0 58.6 30.5 56.86
StableLM 2-1.6B 68.8 64.1 75.1 76.9 80.0 60.3 39.2 66.34
Cerebras-GPT-1.3B 38.4 51.9 66.8 73.0 59.3 45.8 25.3 51.50
MiniCPM-1B 67.5 63.7 75.1 91.0 70.5 62.9 38.1 66.97
MiniCPM-2B 67.2 63.9 76.1 92.5 74.6 69.0 42.7 69.43
Gemma-2B 71.4 65.2 78.4 91.4 69.9 72.3 42.0 70.09
Gemma 2-2B 55.0 68.7 78.7 96.0 73.6 80.3 46.9 71.31

License

  • This repository is released under the Apache-2.0 License.

Citation

@misc{yi2024phonelmanefficientcapablesmall,
      title={PhoneLM:an Efficient and Capable Small Language Model Family through Principled Pre-training}, 
      author={Rongjie Yi and Xiang Li and Weikai Xie and Zhenyan Lu and Chenghua Wang and Ao Zhou and Shangguang Wang and Xiwen Zhang and Mengwei Xu},
      year={2024},
      eprint={2411.05046},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2411.05046}, 
}
Downloads last month
20
Safetensors
Model size
1.62B params
Tensor type
BF16
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Model tree for mllmTeam/PhoneLM-1.5B

Finetunes
1 model

Datasets used to train mllmTeam/PhoneLM-1.5B

Collection including mllmTeam/PhoneLM-1.5B