Text Generation
Transformers
Safetensors
MLX
English
Japanese
llama
conversational
text-generation-inference
Inference Endpoints
schroneko's picture
4c836e9bd76d838ecf33be5ae92962926fcca4def0421966efe50fa5f41cf4f2
4f537da verified
|
raw
history blame
1.19 kB
metadata
language:
  - en
  - ja
library_name: transformers
pipeline_tag: text-generation
license:
  - llama3.1
  - gemma
model_type: llama
datasets:
  - lmsys/lmsys-chat-1m
  - tokyotech-llm/lmsys-chat-1m-synth
  - argilla/magpie-ultra-v0.1
base_model: tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2
tags:
  - mlx

mlx-community/Llama-3.1-Swallow-8B-Instruct-v0.2

The Model mlx-community/Llama-3.1-Swallow-8B-Instruct-v0.2 was converted to MLX format from tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2 using mlx-lm version 0.19.1.

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/Llama-3.1-Swallow-8B-Instruct-v0.2")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)