prince-canuma's picture
17732865921446004ca14c7ef53f8013b5352d936a73fcfc077c8240ebc9bb56
f70e965 verified
|
raw
history blame
1.66 kB
metadata
base_model: CohereForAI/c4ai-command-r7b-12-2024
language:
  - en
  - fr
  - de
  - es
  - it
  - pt
  - ja
  - ko
  - zh
  - ar
  - el
  - fa
  - pl
  - id
  - cs
  - he
  - hi
  - nl
  - ro
  - ru
  - tr
  - uk
  - vi
library_name: transformers
license: cc-by-nc-4.0
tags:
  - mlx
inference: false
extra_gated_prompt: >-
  By submitting this form, you agree to the [License
  Agreement](https://cohere.com/c4ai-cc-by-nc-license)  and acknowledge that the
  information you provide will be collected, used, and shared in accordance with
  Cohere’s [Privacy Policy]( https://cohere.com/privacy). You’ll receive email
  updates about C4AI and Cohere research, events, products and services. You can
  unsubscribe at any time.
extra_gated_fields:
  Name: text
  Affiliation: text
  Country: country
  I agree to use this model for non-commercial use ONLY: checkbox

mlx-community/c4ai-command-r7b-12-2024-4bit

The Model mlx-community/c4ai-command-r7b-12-2024-4bit was converted to MLX format from CohereForAI/c4ai-command-r7b-12-2024 using mlx-lm version 0.20.4.

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/c4ai-command-r7b-12-2024-4bit")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)