mohammed's picture
End of training
189334a verified
metadata
library_name: transformers
language:
  - ar
license: apache-2.0
base_model: openai/whisper-small
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small AR - Mohammed Bakheet
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: ar
          split: test
          args: ar
        metrics:
          - name: Wer
            type: wer
            value: 20.45616669795382

Whisper Small AR - Mohammed Bakheet

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2601
  • Wer: 20.4562

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5279 0.4158 500 0.3311 27.6591
0.2513 0.8316 1000 0.2866 24.5504
0.1673 1.2478 1500 0.2735 22.8928
0.1324 1.6635 2000 0.2645 21.8153
0.1138 2.0797 2500 0.2613 21.3816
0.064 2.4955 3000 0.2651 21.0006
0.0615 2.9113 3500 0.2601 20.4562

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3