monai
medical
File size: 3,937 Bytes
139850b
 
0e72621
139850b
0e72621
fb61f80
b243c9e
ad30235
512a97f
9b1d3a3
0238d7d
bd4bc85
41526c1
dd88eb7
ef9db36
9daa8eb
dab3954
6ee0257
ef4cf37
635fb71
32f3b11
9177aa6
4031888
9ee4eef
139850b
 
0e72621
0238d7d
 
139850b
9ee4eef
6ee0257
 
 
139850b
bd4bc85
139850b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9177aa6
139850b
 
9177aa6
 
 
 
139850b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9177aa6
 
 
139850b
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
{
    "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
    "version": "0.4.6",
    "changelog": {
        "0.4.6": "add dataset dir example",
        "0.4.5": "update ONNX-TensorRT descriptions",
        "0.4.4": "update error links",
        "0.4.3": "add the ONNX-TensorRT way of model conversion",
        "0.4.2": "fix mgpu finalize issue",
        "0.4.1": "add non-deterministic note",
        "0.4.0": "adapt to BundleWorkflow interface",
        "0.3.9": "black autofix format and add name tag",
        "0.3.8": "modify dataset key name",
        "0.3.7": "restructure readme to match updated template",
        "0.3.6": "added train/val graphs",
        "0.3.5": "update prepare datalist function",
        "0.3.4": "update output format of inference",
        "0.3.3": "update to use monai 1.0.1",
        "0.3.2": "enhance readme on commands example",
        "0.3.1": "fix license Copyright error",
        "0.3.0": "update license files",
        "0.2.1": "fix network_data_format error",
        "0.2.0": "unify naming",
        "0.1.1": "update for MetaTensor",
        "0.1.0": "complete the model package"
    },
    "monai_version": "1.2.0rc6",
    "pytorch_version": "1.13.1",
    "numpy_version": "1.22.2",
    "optional_packages_version": {
        "nibabel": "4.0.1",
        "pytorch-ignite": "0.4.9",
        "scikit-learn": "1.1.3",
        "tensorboard": "2.10.1"
    },
    "name": "BraTS MRI segmentation",
    "task": "Multimodal Brain Tumor segmentation",
    "description": "A pre-trained model for volumetric (3D) segmentation of brain tumor subregions from multimodal MRIs based on BraTS 2018 data",
    "authors": "MONAI team",
    "copyright": "Copyright (c) MONAI Consortium",
    "data_source": "https://www.med.upenn.edu/sbia/brats2018/data.html",
    "data_type": "nibabel",
    "image_classes": "4 channel data, T1c, T1, T2, FLAIR at 1x1x1 mm",
    "label_classes": "3 channel data, channel 0 for Tumor core, channel 1 for Whole tumor, channel 2 for Enhancing tumor",
    "pred_classes": "3 channels data, same as label_classes",
    "eval_metrics": {
        "val_mean_dice": 0.8518,
        "val_mean_dice_tc": 0.8559,
        "val_mean_dice_wt": 0.9026,
        "val_mean_dice_et": 0.7905
    },
    "intended_use": "This is an example, not to be used for diagnostic purposes",
    "references": [
        "Myronenko, Andriy. '3D MRI brain tumor segmentation using autoencoder regularization.' International MICCAI Brainlesion Workshop. Springer, Cham, 2018. https://arxiv.org/abs/1810.11654"
    ],
    "network_data_format": {
        "inputs": {
            "image": {
                "type": "image",
                "format": "magnitude",
                "modality": "MR",
                "num_channels": 4,
                "spatial_shape": [
                    "8*n",
                    "8*n",
                    "8*n"
                ],
                "dtype": "float32",
                "value_range": [],
                "is_patch_data": true,
                "channel_def": {
                    "0": "T1c",
                    "1": "T1",
                    "2": "T2",
                    "3": "FLAIR"
                }
            }
        },
        "outputs": {
            "pred": {
                "type": "image",
                "format": "segmentation",
                "num_channels": 3,
                "spatial_shape": [
                    "8*n",
                    "8*n",
                    "8*n"
                ],
                "dtype": "float32",
                "value_range": [
                    0,
                    1
                ],
                "is_patch_data": true,
                "channel_def": {
                    "0": "Tumor core",
                    "1": "Whole tumor",
                    "2": "Enhancing tumor"
                }
            }
        }
    }
}