File size: 3,937 Bytes
139850b 0e72621 139850b 0e72621 fb61f80 b243c9e ad30235 512a97f 9b1d3a3 0238d7d bd4bc85 41526c1 dd88eb7 ef9db36 9daa8eb dab3954 6ee0257 ef4cf37 635fb71 32f3b11 9177aa6 4031888 9ee4eef 139850b 0e72621 0238d7d 139850b 9ee4eef 6ee0257 139850b bd4bc85 139850b 9177aa6 139850b 9177aa6 139850b 9177aa6 139850b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
{
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
"version": "0.4.6",
"changelog": {
"0.4.6": "add dataset dir example",
"0.4.5": "update ONNX-TensorRT descriptions",
"0.4.4": "update error links",
"0.4.3": "add the ONNX-TensorRT way of model conversion",
"0.4.2": "fix mgpu finalize issue",
"0.4.1": "add non-deterministic note",
"0.4.0": "adapt to BundleWorkflow interface",
"0.3.9": "black autofix format and add name tag",
"0.3.8": "modify dataset key name",
"0.3.7": "restructure readme to match updated template",
"0.3.6": "added train/val graphs",
"0.3.5": "update prepare datalist function",
"0.3.4": "update output format of inference",
"0.3.3": "update to use monai 1.0.1",
"0.3.2": "enhance readme on commands example",
"0.3.1": "fix license Copyright error",
"0.3.0": "update license files",
"0.2.1": "fix network_data_format error",
"0.2.0": "unify naming",
"0.1.1": "update for MetaTensor",
"0.1.0": "complete the model package"
},
"monai_version": "1.2.0rc6",
"pytorch_version": "1.13.1",
"numpy_version": "1.22.2",
"optional_packages_version": {
"nibabel": "4.0.1",
"pytorch-ignite": "0.4.9",
"scikit-learn": "1.1.3",
"tensorboard": "2.10.1"
},
"name": "BraTS MRI segmentation",
"task": "Multimodal Brain Tumor segmentation",
"description": "A pre-trained model for volumetric (3D) segmentation of brain tumor subregions from multimodal MRIs based on BraTS 2018 data",
"authors": "MONAI team",
"copyright": "Copyright (c) MONAI Consortium",
"data_source": "https://www.med.upenn.edu/sbia/brats2018/data.html",
"data_type": "nibabel",
"image_classes": "4 channel data, T1c, T1, T2, FLAIR at 1x1x1 mm",
"label_classes": "3 channel data, channel 0 for Tumor core, channel 1 for Whole tumor, channel 2 for Enhancing tumor",
"pred_classes": "3 channels data, same as label_classes",
"eval_metrics": {
"val_mean_dice": 0.8518,
"val_mean_dice_tc": 0.8559,
"val_mean_dice_wt": 0.9026,
"val_mean_dice_et": 0.7905
},
"intended_use": "This is an example, not to be used for diagnostic purposes",
"references": [
"Myronenko, Andriy. '3D MRI brain tumor segmentation using autoencoder regularization.' International MICCAI Brainlesion Workshop. Springer, Cham, 2018. https://arxiv.org/abs/1810.11654"
],
"network_data_format": {
"inputs": {
"image": {
"type": "image",
"format": "magnitude",
"modality": "MR",
"num_channels": 4,
"spatial_shape": [
"8*n",
"8*n",
"8*n"
],
"dtype": "float32",
"value_range": [],
"is_patch_data": true,
"channel_def": {
"0": "T1c",
"1": "T1",
"2": "T2",
"3": "FLAIR"
}
}
},
"outputs": {
"pred": {
"type": "image",
"format": "segmentation",
"num_channels": 3,
"spatial_shape": [
"8*n",
"8*n",
"8*n"
],
"dtype": "float32",
"value_range": [
0,
1
],
"is_patch_data": true,
"channel_def": {
"0": "Tumor core",
"1": "Whole tumor",
"2": "Enhancing tumor"
}
}
}
}
}
|