|
--- |
|
library_name: peft |
|
tags: |
|
- code |
|
- instruct |
|
- llama2 |
|
datasets: |
|
- cognitivecomputations/dolphin-coder |
|
base_model: meta-llama/Llama-2-7b-hf |
|
license: apache-2.0 |
|
--- |
|
|
|
### Finetuning Overview: |
|
|
|
**Model Used:** meta-llama/Llama-2-7b-hf |
|
|
|
**Dataset:** cognitivecomputations/dolphin-coder |
|
|
|
#### Dataset Insights: |
|
|
|
[Dolphin-Coder](https://huggingface.co/datasets/cognitivecomputations/dolphin-coder) Dolphin-Coder dataset – a high-quality collection of 100,000+ coding questions and responses. It's perfect for supervised fine-tuning (SFT), and teaching language models to improve on coding-based tasks. |
|
|
|
#### Finetuning Details: |
|
|
|
With the utilization of [MonsterAPI](https://monsterapi.ai)'s [no-code LLM finetuner](https://monsterapi.ai/finetuning), this finetuning: |
|
|
|
- Was achieved with great cost-effectiveness. |
|
- Completed in a total duration of 15hr 31mins for 1 epochs using an A6000 48GB GPU. |
|
- Costed `$31.31` for the entire 1 epoch. |
|
|
|
#### Hyperparameters & Additional Details: |
|
|
|
- **Epochs:** 1 |
|
- **Total Finetuning Cost:** $31.31 |
|
- **Model Path:** meta-llama/Llama-2-7b-hf |
|
- **Learning Rate:** 0.0002 |
|
- **Data Split:** 100% train |
|
- **Gradient Accumulation Steps:** 128 |
|
- **lora r:** 32 |
|
- **lora alpha:** 64 |
|
|
|
--- |
|
license: apache-2.0 |