PEFT
Safetensors
llama
axolotl
Generated from Trainer
minpeter's picture
Upload folder using huggingface_hub
251067c verified
metadata
library_name: peft
license: llama3.2
base_model: meta-llama/Llama-3.2-3B-Instruct
tags:
  - axolotl
  - generated_from_trainer
datasets:
  - minpeter/xlam-function-calling-60k-hermes
  - minpeter/xlam-irrelevance-7.5k-qwen2.5-72b-distill-hermes
model-index:
  - name: m-3b-v1-iteration-00-sf-xlam-07
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.7.0

base_model: meta-llama/Llama-3.2-3B-Instruct
hub_model_id: morsmordre/m-3b-v1-iteration-00-sf-xlam-07

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: minpeter/xlam-function-calling-60k-hermes
    data_files:
      - result.parquet
    type: chat_template
    chat_template: llama3
    field_messages: conversations
    message_field_role: from
    message_field_content: value
    shards: 30
  - path: minpeter/xlam-irrelevance-7.5k-qwen2.5-72b-distill-hermes
    data_files:
      - result.parquet
    type: chat_template
    chat_template: llama3
    field_messages: conversations
    message_field_role: from
    message_field_content: value
    shards: 5

chat_template: llama3

dataset_prepared_path: last_run_prepared

output_dir: ./output

adapter: lora
lora_model_dir:

sequence_len: 4096
pad_to_sequence_len: true
sample_packing: true

val_set_size: 0.05
eval_sample_packing: true
evals_per_epoch: 3

lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project: "axolotl"
wandb_entity: "kasfiekfs-e"
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:

special_tokens:
  pad_token: "<|finetune_right_pad_id|>"

m-3b-v1-iteration-00-sf-xlam-07

This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the minpeter/xlam-function-calling-60k-hermes and the minpeter/xlam-irrelevance-7.5k-qwen2.5-72b-distill-hermes datasets. It achieves the following results on the evaluation set:

  • Loss: 0.2159

Model description

Test Category Adapter Accuracy Base Model Accuracy Improvement
irrelevance 76.25% 72.08% +4.17%
parallel_multiple 89.50% 10.00% +79.50%
parallel 89.50% 11.50% +78.00%
simple 92.75% 24.75% +68.00%
multiple 93.50% 20.00% +73.50%

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss
0.8199 0.0072 1 0.6489
0.0898 0.3381 47 0.2228
0.2114 0.6763 94 0.2159

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0