layoutlmv3-base-sroie
This model is a fine-tuned version of layoutlmv3 on the mp-02/sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.0639
- Precision: 0.9236
- Recall: 0.9625
- F1: 0.9427
- Accuracy: 0.9821
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 3000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 2.5 | 100 | 0.1464 | 0.9081 | 0.8488 | 0.8775 | 0.9645 |
No log | 5.0 | 200 | 0.0821 | 0.9322 | 0.9294 | 0.9308 | 0.9791 |
No log | 7.5 | 300 | 0.0746 | 0.9204 | 0.9469 | 0.9335 | 0.9796 |
No log | 10.0 | 400 | 0.0685 | 0.9213 | 0.9506 | 0.9357 | 0.9802 |
0.1644 | 12.5 | 500 | 0.0657 | 0.9192 | 0.9586 | 0.9385 | 0.9809 |
0.1644 | 15.0 | 600 | 0.0678 | 0.9071 | 0.9649 | 0.9351 | 0.9796 |
0.1644 | 17.5 | 700 | 0.0636 | 0.9242 | 0.9625 | 0.9430 | 0.9822 |
0.1644 | 20.0 | 800 | 0.0643 | 0.9238 | 0.9609 | 0.9420 | 0.9819 |
0.1644 | 22.5 | 900 | 0.0620 | 0.9254 | 0.9629 | 0.9438 | 0.9824 |
0.0331 | 25.0 | 1000 | 0.0639 | 0.9236 | 0.9625 | 0.9427 | 0.9821 |
0.0331 | 27.5 | 1100 | 0.0632 | 0.9249 | 0.9639 | 0.9440 | 0.9825 |
0.0331 | 30.0 | 1200 | 0.0619 | 0.9268 | 0.9615 | 0.9439 | 0.9825 |
0.0331 | 32.5 | 1300 | 0.0640 | 0.9216 | 0.9665 | 0.9435 | 0.9823 |
0.0331 | 35.0 | 1400 | 0.0653 | 0.9201 | 0.9665 | 0.9428 | 0.9820 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 18
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train mp-02/layoutlmv3-base-sroie
Space using mp-02/layoutlmv3-base-sroie 1
Evaluation results
- Precision on mp-02/sroieself-reported0.924
- Recall on mp-02/sroieself-reported0.963
- F1 on mp-02/sroieself-reported0.943
- Accuracy on mp-02/sroieself-reported0.982