Edit model card

layoutlmv3-base-sroie

This model is a fine-tuned version of layoutlmv3 on the mp-02/sroie dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0639
  • Precision: 0.9236
  • Recall: 0.9625
  • F1: 0.9427
  • Accuracy: 0.9821

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 3000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 2.5 100 0.1464 0.9081 0.8488 0.8775 0.9645
No log 5.0 200 0.0821 0.9322 0.9294 0.9308 0.9791
No log 7.5 300 0.0746 0.9204 0.9469 0.9335 0.9796
No log 10.0 400 0.0685 0.9213 0.9506 0.9357 0.9802
0.1644 12.5 500 0.0657 0.9192 0.9586 0.9385 0.9809
0.1644 15.0 600 0.0678 0.9071 0.9649 0.9351 0.9796
0.1644 17.5 700 0.0636 0.9242 0.9625 0.9430 0.9822
0.1644 20.0 800 0.0643 0.9238 0.9609 0.9420 0.9819
0.1644 22.5 900 0.0620 0.9254 0.9629 0.9438 0.9824
0.0331 25.0 1000 0.0639 0.9236 0.9625 0.9427 0.9821
0.0331 27.5 1100 0.0632 0.9249 0.9639 0.9440 0.9825
0.0331 30.0 1200 0.0619 0.9268 0.9615 0.9439 0.9825
0.0331 32.5 1300 0.0640 0.9216 0.9665 0.9435 0.9823
0.0331 35.0 1400 0.0653 0.9201 0.9665 0.9428 0.9820

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
18
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train mp-02/layoutlmv3-base-sroie

Space using mp-02/layoutlmv3-base-sroie 1

Evaluation results