mp-02's picture
End of training
09b9e73 verified
metadata
library_name: transformers
base_model: layoutlmv3
tags:
  - generated_from_trainer
datasets:
  - mp-02/sroie
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-base-sroie
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: mp-02/sroie
          type: mp-02/sroie
        metrics:
          - name: Precision
            type: precision
            value: 0.9236398345529748
          - name: Recall
            type: recall
            value: 0.9625331564986738
          - name: F1
            type: f1
            value: 0.9426855008930022
          - name: Accuracy
            type: accuracy
            value: 0.9821007282798235

layoutlmv3-base-sroie

This model is a fine-tuned version of layoutlmv3 on the mp-02/sroie dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0639
  • Precision: 0.9236
  • Recall: 0.9625
  • F1: 0.9427
  • Accuracy: 0.9821

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 3000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 2.5 100 0.1464 0.9081 0.8488 0.8775 0.9645
No log 5.0 200 0.0821 0.9322 0.9294 0.9308 0.9791
No log 7.5 300 0.0746 0.9204 0.9469 0.9335 0.9796
No log 10.0 400 0.0685 0.9213 0.9506 0.9357 0.9802
0.1644 12.5 500 0.0657 0.9192 0.9586 0.9385 0.9809
0.1644 15.0 600 0.0678 0.9071 0.9649 0.9351 0.9796
0.1644 17.5 700 0.0636 0.9242 0.9625 0.9430 0.9822
0.1644 20.0 800 0.0643 0.9238 0.9609 0.9420 0.9819
0.1644 22.5 900 0.0620 0.9254 0.9629 0.9438 0.9824
0.0331 25.0 1000 0.0639 0.9236 0.9625 0.9427 0.9821
0.0331 27.5 1100 0.0632 0.9249 0.9639 0.9440 0.9825
0.0331 30.0 1200 0.0619 0.9268 0.9615 0.9439 0.9825
0.0331 32.5 1300 0.0640 0.9216 0.9665 0.9435 0.9823
0.0331 35.0 1400 0.0653 0.9201 0.9665 0.9428 0.9820

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1