File size: 3,179 Bytes
a70c708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b9e73
a70c708
 
09b9e73
a70c708
 
09b9e73
a70c708
 
09b9e73
a70c708
 
 
 
 
 
 
 
 
09b9e73
 
 
 
 
a70c708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b9e73
a70c708
 
 
 
 
 
 
 
 
 
 
09b9e73
 
 
 
 
 
 
 
 
 
 
 
 
 
a70c708
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
library_name: transformers
base_model: layoutlmv3
tags:
- generated_from_trainer
datasets:
- mp-02/sroie
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-base-sroie
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: mp-02/sroie
      type: mp-02/sroie
    metrics:
    - name: Precision
      type: precision
      value: 0.9236398345529748
    - name: Recall
      type: recall
      value: 0.9625331564986738
    - name: F1
      type: f1
      value: 0.9426855008930022
    - name: Accuracy
      type: accuracy
      value: 0.9821007282798235
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlmv3-base-sroie

This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/sroie dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0639
- Precision: 0.9236
- Recall: 0.9625
- F1: 0.9427
- Accuracy: 0.9821

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 3000

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 2.5   | 100  | 0.1464          | 0.9081    | 0.8488 | 0.8775 | 0.9645   |
| No log        | 5.0   | 200  | 0.0821          | 0.9322    | 0.9294 | 0.9308 | 0.9791   |
| No log        | 7.5   | 300  | 0.0746          | 0.9204    | 0.9469 | 0.9335 | 0.9796   |
| No log        | 10.0  | 400  | 0.0685          | 0.9213    | 0.9506 | 0.9357 | 0.9802   |
| 0.1644        | 12.5  | 500  | 0.0657          | 0.9192    | 0.9586 | 0.9385 | 0.9809   |
| 0.1644        | 15.0  | 600  | 0.0678          | 0.9071    | 0.9649 | 0.9351 | 0.9796   |
| 0.1644        | 17.5  | 700  | 0.0636          | 0.9242    | 0.9625 | 0.9430 | 0.9822   |
| 0.1644        | 20.0  | 800  | 0.0643          | 0.9238    | 0.9609 | 0.9420 | 0.9819   |
| 0.1644        | 22.5  | 900  | 0.0620          | 0.9254    | 0.9629 | 0.9438 | 0.9824   |
| 0.0331        | 25.0  | 1000 | 0.0639          | 0.9236    | 0.9625 | 0.9427 | 0.9821   |
| 0.0331        | 27.5  | 1100 | 0.0632          | 0.9249    | 0.9639 | 0.9440 | 0.9825   |
| 0.0331        | 30.0  | 1200 | 0.0619          | 0.9268    | 0.9615 | 0.9439 | 0.9825   |
| 0.0331        | 32.5  | 1300 | 0.0640          | 0.9216    | 0.9665 | 0.9435 | 0.9823   |
| 0.0331        | 35.0  | 1400 | 0.0653          | 0.9201    | 0.9665 | 0.9428 | 0.9820   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1