mp-02's picture
End of training
a70c708 verified
|
raw
history blame
2.54 kB
---
library_name: transformers
base_model: layoutlmv3
tags:
- generated_from_trainer
datasets:
- mp-02/sroie
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-base-sroie
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: mp-02/sroie
type: mp-02/sroie
metrics:
- name: Precision
type: precision
value: 0.9469573706475757
- name: Recall
type: recall
value: 0.9648541114058355
- name: F1
type: f1
value: 0.9558219740515684
- name: Accuracy
type: accuracy
value: 0.9863575751359114
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv3-base-sroie
This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/sroie dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0526
- Precision: 0.9470
- Recall: 0.9649
- F1: 0.9558
- Accuracy: 0.9864
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 3000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 2.5 | 100 | 0.0806 | 0.9001 | 0.9377 | 0.9185 | 0.9759 |
| No log | 5.0 | 200 | 0.0541 | 0.9392 | 0.9576 | 0.9483 | 0.9840 |
| No log | 7.5 | 300 | 0.0515 | 0.9368 | 0.9629 | 0.9496 | 0.9844 |
| No log | 10.0 | 400 | 0.0515 | 0.9450 | 0.9622 | 0.9535 | 0.9856 |
| 0.0717 | 12.5 | 500 | 0.0526 | 0.9470 | 0.9649 | 0.9558 | 0.9864 |
| 0.0717 | 15.0 | 600 | 0.0558 | 0.9353 | 0.9685 | 0.9516 | 0.9849 |
| 0.0717 | 17.5 | 700 | 0.0668 | 0.9408 | 0.9635 | 0.9520 | 0.9852 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1