metadata
base_model: layoutlmv3
tags:
- generated_from_trainer
datasets:
- mp-02/cord
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-cord
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: mp-02/cord
type: mp-02/cord
metrics:
- name: Precision
type: precision
value: 0.9474485910129474
- name: Recall
type: recall
value: 0.9658385093167702
- name: F1
type: f1
value: 0.9565551710880431
- name: Accuracy
type: accuracy
value: 0.9613752122241087
layoutlmv3-finetuned-cord
This model is a fine-tuned version of layoutlmv3 on the mp-02/cord dataset. It achieves the following results on the evaluation set:
- Loss: 0.2047
- Precision: 0.9474
- Recall: 0.9658
- F1: 0.9566
- Accuracy: 0.9614
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1500
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 3.125 | 250 | 0.7037 | 0.8188 | 0.8665 | 0.8419 | 0.8587 |
1.0839 | 6.25 | 500 | 0.3828 | 0.8926 | 0.9293 | 0.9106 | 0.9223 |
1.0839 | 9.375 | 750 | 0.2811 | 0.9371 | 0.9596 | 0.9482 | 0.9469 |
0.2469 | 12.5 | 1000 | 0.2295 | 0.9401 | 0.9620 | 0.9509 | 0.9529 |
0.2469 | 15.625 | 1250 | 0.2106 | 0.9460 | 0.9658 | 0.9558 | 0.9601 |
0.1263 | 18.75 | 1500 | 0.2047 | 0.9474 | 0.9658 | 0.9566 | 0.9614 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1