Edit model card

Switch Transformer (base-16) fine-tuned om samsum for conversation summarization

This model is a fine-tuned version of google/switch-base-16 on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4434
  • Rouge1: 47.2139
  • Rouge2: 23.3399
  • Rougel: 39.8364
  • Rougelsum: 43.2592
  • Gen Len: 16.9194

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.846 1.0 3683 1.4857 45.9134 22.4258 38.9716 42.6169 17.0623
1.5734 2.0 7366 1.4346 47.574 24.2967 40.3749 44.2636 17.3790
1.38 3.0 11049 1.4277 47.9915 24.9077 40.658 44.5301 17.1406
1.2388 4.0 14732 1.4223 48.3444 25.4061 41.2776 45.0434 16.9254
1.1629 5.0 18415 1.4372 48.5991 25.5464 41.3726 45.0784 16.9890

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.1+cu116
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train mrm8488/switch-base-16-finetuned-samsum

Evaluation results