MoE & Merge
Collection
17 items
β’
Updated
β’
1
mistral-7b-merged-dare-v2 is a merge of the following models:
models:
- model: mistralai/Mistral-7B-v0.1
- model: samir-fama/SamirGPT-v1
parameters:
density: 0.53
weight: 0.4
- model: abacusai/Slerp-CM-mist-dpo
parameters:
density: 0.53
weight: 0.3
- model: EmbeddedLLM/Mistral-7B-Merge-14-v0.2
parameters:
density: 0.53
weight: 0.3
- model: Weyaxi/Einstein-v4-7B
parameters:
density: 0.53
weight: 0.3
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: bfloat16
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mistral-7b-merged-dare_6x7"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Why the sky is blue"}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 73.46 |
AI2 Reasoning Challenge (25-Shot) | 69.62 |
HellaSwag (10-Shot) | 87.04 |
MMLU (5-Shot) | 65.18 |
TruthfulQA (0-shot) | 66.98 |
Winogrande (5-shot) | 80.58 |
GSM8k (5-shot) | 71.34 |