MoE & Merge
Collection
17 items
β’
Updated
β’
1
mistral-7b-merged-ties is a merge of the following models:
models:
- model: mistralai/Mistral-7B-v0.1
- model: OpenPipe/mistral-ft-optimized-1218
parameters:
density: 0.5 # density gradient
weight: 0.3
- model: mlabonne/NeuralHermes-2.5-Mistral-7B
parameters:
density: 0.5
weight: 0.3 # weight gradient
merge_method: ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
normalize: true
dtype: bfloat16
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mychen76/mistral-7b-merged-ties"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Why the sky is blue"}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 71.37 |
AI2 Reasoning Challenge (25-Shot) | 67.92 |
HellaSwag (10-Shot) | 85.93 |
MMLU (5-Shot) | 64.07 |
TruthfulQA (0-shot) | 61.31 |
Winogrande (5-shot) | 80.03 |
GSM8k (5-shot) | 68.54 |