Model

This model is fine-tuned based on Meta-Llama/Meta-Llama-3-8B instructions via mlx-lm.

Note: The glaive-function-calling-v2 dataset contains some invalid JSON and single quotes for the arguments' values. I have re-trained the model based on cleaned-up data. If you encounter issues with the function calling JSON format, you may try this new version here: https://huggingface.co/mzbac/llama-3-8B-Instruct-function-calling-v0.2

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = "mzbac/llama-3-8B-Instruct-function-calling"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)

tool = {
            "name": "search_web",
            "description": "Perform a web search for a given search terms.",
            "parameter": {
                "type": "object", 
                "properties": {
                    "search_terms": {
                    "type": "array",
                    "items": {"type": "string"},
                    "description": "The search queries for which the search is performed.",
                    "required": True,
                    }
                }
            },
        }

messages = [
            {
                "role": "system",
                "content": f"You are a helpful assistant with access to the following functions. Use them if required - {str(tool)}",
            },
            {"role": "user", "content": "Today's news in Melbourne, just for your information, today is April 27, 2014."},
        ]

input_ids = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    return_tensors="pt"
).to(model.device)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = model.generate(
    input_ids,
    max_new_tokens=256,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.1,
)
response = outputs[0]
print(tokenizer.decode(response))

# <|begin_of_text|><|start_header_id|>system<|end_header_id|>

# You are a helpful assistant with access to the following functions. Use them if required - {'name':'search_web', 'description': 'Perform a web search for a given search terms.', 'parameter': {'type': 'object', 'properties': {'search_terms': {'type': 'array', 'items': {'type':'string'}, 'description': 'The search queries for which the search is performed.','required': True}}}}<|eot_id|><|start_header_id|>user<|end_header_id|>

# Today's news in Melbourne, just for your information, today is April 27, 2014.<|eot_id|><|start_header_id|>assistant<|end_header_id|>

# <functioncall> {"name": "search_web", "arguments": '{"search_terms": ["Melbourne news", "April 27, 2014"]}'}<|eot_id|>

Training hyperparameters

lora_config.yaml

# The path to the local model directory or Hugging Face repo.
model: "meta-llama/Meta-Llama-3-8B-Instruct"
# Whether or not to train (boolean)
train: true

# Directory with {train, valid, test}.jsonl files
data: "data"

# The PRNG seed
seed: 0

# Number of layers to fine-tune
lora_layers: 32

# Minibatch size.
batch_size: 1

# Iterations to train for.
iters: 6000

# Number of validation batches, -1 uses the entire validation set.
val_batches: 25

# Adam learning rate.
learning_rate: 1e-6

# Number of training steps between loss reporting.
steps_per_report: 10

# Number of training steps between validations.
steps_per_eval: 200

# Load path to resume training with the given adapter weights.
resume_adapter_file: null

# Save/load path for the trained adapter weights.
adapter_path: "adapters"

# Save the model every N iterations.
save_every: 1000

# Evaluate on the test set after training
test: false

# Number of test set batches, -1 uses the entire test set.
test_batches: 100

# Maximum sequence length.
max_seq_length: 8192

# Use gradient checkpointing to reduce memory use.
grad_checkpoint: false

# LoRA parameters can only be specified in a config file
lora_parameters:
  # The layer keys to apply LoRA to.
  # These will be applied for the last lora_layers
  keys: ['mlp.gate_proj', 'mlp.down_proj', 'self_attn.q_proj', 'mlp.up_proj', 'self_attn.o_proj','self_attn.v_proj', 'self_attn.k_proj']
  rank: 128
  alpha: 256
  scale: 10.0
  dropout: 0.05

# Schedule can only be specified in a config file, uncomment to use.
#lr_schedule:
#  name: cosine_decay
#  warmup: 100 # 0 for no warmup
#  warmup_init: 1e-7 # 0 if not specified
#  arguments: [1e-6, 1000, 1e-7] # passed to scheduler
Downloads last month
16
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mzbac/llama-3-8B-Instruct-function-calling

Quantizations
1 model

Dataset used to train mzbac/llama-3-8B-Instruct-function-calling