Model Card for Model ID
This modelcard aims to be a base template for new models. It has been generated using this raw template.
Model Details
Configs
name: llama
model:
pretrained_model_name_or_path: 'mistralai/Mistral-7B-v0.1'
cache_dir: '/juice/scr/scr110/scr/nlp/data/neo/hub/'
return_dict: true
quantization: false
device_map: auto # null
low_cpu_mem_usage: true # false
torch_dtype: bfloat16
attn_implementation: eager # so we can load attention weights
rope_theta: 10000.0
attention:
attention_type: hedgehog_llama
feature_map: softmax_dim
feature_map_kwargs:
input_dim: 128
eps: 1e-12
# mlp: null # to set
fullspace: true
layer_idx: null # to set
learned_kernel: untied_head
learned_kernel_kwargs:
feature_dim: 128
skip_connection: false
bias: false
zero_init: false
tie_qk_kernels: false
train_qk: true
peft:
method: lora
kwargs:
r: 8 # 256
lora_alpha: 16 # 512
lora_dropout: 0.1 # 0.05
target_modules: ['self_attn.q_proj', 'self_attn.k_proj']
dataset:
name: alpaca_clean
dataset_config:
name: alpaca
path: yahma/alpaca-cleaned
chunk_size: 1024 # 2048
concat_data: true
cache_dir: '/u/scr/nlp/data/alpaca'
pretrained_model_config:
pretrained_model_name_or_path: 'mistralai/Mistral-7B-v0.1'
cache_dir: '/juice/scr/scr110/scr/nlp/data/neo/hub/'
preprocess_config: null
dataloader:
batch_size: 1
num_workers: 2
drop_last: false
pin_memory: true
optimizer:
optim: adamw_torch_fused
lr: 0.001
weight_decay: 0.0
lr_scheduler:
lr_scheduler_type: reduce_lr_on_plateau
mode: min
factor: 0.1
patience: 10
min_lr: 0.00001
trainer: # HuggingFace Trainer-like arguments
name: distill_attention
token_reduce: true
bottom_attention_only: false
reverse_kl: false
bf16: true
train_split: train
val_split: validation
num_train_epochs: 2
gradient_accumulation_steps: 8
seed: 42
batch_size: 1
load_best_model_at_end: true
greater_is_better: false
metric_for_best_model: distill/eval/loss
logging_steps: 100
evaluation_strategy: steps
max_steps: -1
eval_steps: 100
max_eval_batches: null
dataset:
name: alpaca_clean
dataset_config:
name: alpaca
path: yahma/alpaca-cleaned
chunk_size: 1024 # 2048
concat_data: true
cache_dir: '/u/scr/nlp/data/alpaca'
pretrained_model_config:
pretrained_model_name_or_path: 'mistralai/Mistral-7B-v0.1'
cache_dir: '/juice/scr/scr110/scr/nlp/data/neo/hub/'
preprocess_config: null
dataloader:
batch_size: 1
num_workers: 2
drop_last: false
pin_memory: true
optimizer:
optim: adamw_torch_fused
lr: 1e-4
weight_decay: 0.0
lr_scheduler:
lr_scheduler_type: reduce_lr_on_plateau
mode: min
factor: 0.1
patience: 10
min_lr: 0.00001
trainer: # HuggingFace Trainer-like arguments
name: default
bf16: true
train_split: train
val_split: validation
num_train_epochs: 2
gradient_accumulation_steps: 8
seed: 42
batch_size: 1
load_best_model_at_end: true
greater_is_better: false
metric_for_best_model: eval/loss # eval/rouge/geometric_mean
logging_steps: 100
evaluation_strategy: steps
max_steps: -1
eval_steps: 100
max_eval_batches: null
finetune:
method: lora
kwargs:
r: 8
lora_alpha: 16 # 32
lora_dropout: 0 # 0.05
target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj']
Model Description
- Developed by: [More Information Needed]
- Funded by [optional]: [More Information Needed]
- Shared by [optional]: [More Information Needed]
- Model type: [More Information Needed]
- Language(s) (NLP): [More Information Needed]
- License: [More Information Needed]
- Finetuned from model [optional]: [More Information Needed]
Model Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed]
Software
[More Information Needed]
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]
- Downloads last month
- 81