support by

OpenThaiLLM-Prebuilt-7B: Thai & China & English Large Language Model

OpenThaiLLM-Prebuilt-7B is a Thai ๐Ÿ‡น๐Ÿ‡ญ & Chinese ๐Ÿ‡จ๐Ÿ‡ณ & English ๐Ÿ‡ฌ๐Ÿ‡ง large language model with 7 billion parameters, and it is continue pretrain based on Qwen2.5-7B. It demonstrates competitive performance with llama-3-typhoon-v1.5-8b, and is optimized for application use cases, Retrieval-Augmented Generation (RAG), constrained generation, and reasoning tasks.

Model detail

For release notes, please see our blog.

We do not recommend using base language models for conversations. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.

How to use:

The Colab notebook for getting started with fine-tuning OpenThaiLLM using LoRA is available here.

Datasets Ratio

Requirements

The code of Qwen2.5 has been in the latest Hugging face transformers and we advise you to use the latest version of transformers.

With transformers<4.37.0, you will encounter the following error:

KeyError: 'qwen2'

Evaluation Performance

The Model evaluation performance is outperfoms other model that are leading in the top base model performance of Thai NLP community.

Model ONET IC TGAT TPAT-1 A-Level Average (ThaiExam) MMLU M3Exam M6Exam
OpenthaiLLM-Prebuilt-7B 0.5493 0.6315 0.6307 0.4655 0.37 0.5294 0.7054 0.5705 0.596
SeaLLM-v3-7B 0.4753 0.6421 0.6153 0.3275 0.3464 0.4813 0.7037 0.4907 0.4625
llama-3-typhoon-v1.5-8B 0.3765 0.3473 0.5538 0.4137 0.2913 0.3965 0.6451 0.4312 0.4125
Qwen-2-7B 0.4814 0.621 0.6153 0.3448 0.3385 0.4802 0.7073 0.4949 0.4807
Meta-Llama-3.1-8B 0.3641 0.2631 0.2769 0.3793 0.1811 0.2929 0.6591 0.4239 0.3583

Contributor Contract

LLM Team
Pakawat Phasook (pakawat.phas@kmutt.ac.th)
Jessada Pranee (jessada.pran@kmutt.ac.th)
Arnon Saeoung (anon.saeoueng@gmail.com)
Kun Kerdthaisong (kun.ker@dome.tu.ac.th)
Kittisak Sukhantharat (kittisak.suk@stu.nida.ac.th)
Piyawat Chuangkrud (piyawat@it.kmitl.ac.th)
Chaianun Damrongrat (chaianun.damrongrat@nectec.or.th)
Sarawoot Kongyoung (sarawoot.kongyoung@nectec.or.th)

Audio Team
Pattara Tipaksorn (pattara.tip@ncr.nstda.or.th)
Wayupuk Sommuang (wayupuk.som@dome.tu.ac.th)
Oatsada Chatthong (atsada.cha@dome.tu.ac.th)
Kwanchiva Thangthai (kwanchiva.thangthai@nectec.or.th)

Vision Team
Thirawarit Pitiphiphat (60010474@kmitl.ac.th)
Peerapas Ngokpon (jamesselmon78169@gmail.com)
Theerasit Issaranon (theerasit.issaranon@nectec.or.th)

Citation

If you find our work helpful, feel free to give us a cite.

@misc{qwen2.5,
    title = {Qwen2.5: A Party of Foundation Models},
    url = {https://qwenlm.github.io/blog/qwen2.5/},
    author = {Qwen Team},
    month = {September},
    year = {2024}
}

@article{qwen2,
      title={Qwen2 Technical Report}, 
      author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
      journal={arXiv preprint arXiv:2407.10671},
      year={2024}
}
Downloads last month
259
Safetensors
Model size
7.62B params
Tensor type
F32
ยท
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for nectec/OpenThaiLLM-Prebuilt-7B

Base model

Qwen/Qwen2.5-7B
Finetuned
(177)
this model
Finetunes
1 model
Quantizations
2 models