Built with Axolotl

See axolotl config

axolotl version: 0.6.0

base_model: PrimeIntellect/INTELLECT-1-Instruct
trust_remote_code: true
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

gpu_memory_limit: 

deepspeed: deepspeed_configs/zero2.json

load_in_8bit: 
load_in_4bit:
strict: false

chat_template: llama3
datasets:
  - path: neginashz/rationale-llama-chat-dataset
    type: chat_template
    chat_template: llama3
    field_messages: messages
    message_field_role: role
    message_field_content: content
    roles:
      system:
        - system
      user:
        - user
      assistant:
        - assistant
    #roles_to_train: ["assistant"]  # default
    # Optional[str]. Which EOS tokens to train on in the conversation. Possible values are:
    # - all: train on all EOS tokens
    # - turn (default): train on the EOS token at the end of each trainable turn
    # - last: train on the last EOS token in the conversation
    #train_on_eos: turn

    
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./star-sft-intellect-5

sequence_len: 4096
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true


wandb_project: star-sft-intellect-instruct-5
wandb_entity: 
wandb_watch:
wandb_name: 
wandb_log_model: 

gradient_checkpointing: true
#gradient_clipping: true
gradient_accumulation_steps: 1
#batch_size: 1
micro_batch_size: 1

num_epochs: 1

optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00002

train_on_inputs: false
group_by_length: false

bf16: true
fp16: false
tf32: false

logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps:
eval_steps: 
save_steps:

evals_per_epoch: 16
saves_per_epoch: 4
eval_max_new_tokens: 128

debug:

weight_decay:
fsdp:
fsdp_config:

hub_model_id: neginashz/star-sft-intellect-instruct-5
hub_strategy: 
early_stopping_patience:

resume_from_checkpoint:
auto_resume_from_checkpoints: true

#special_tokens:
#   pad_token: <|end_of_text|>

star-sft-intellect-instruct-5

This model is a fine-tuned version of PrimeIntellect/INTELLECT-1-Instruct on the neginashz/rationale-llama-chat-dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3364

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 4
  • total_eval_batch_size: 4
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 6
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.4105 0.0664 15 0.4274
0.4759 0.1327 30 0.4348
0.4704 0.1991 45 0.4255
0.4612 0.2655 60 0.4167
0.4765 0.3319 75 0.4030
0.4022 0.3982 90 0.3932
0.4234 0.4646 105 0.3856
0.4008 0.5310 120 0.3736
0.4066 0.5973 135 0.3649
0.4007 0.6637 150 0.3568
0.4059 0.7301 165 0.3491
0.3622 0.7965 180 0.3429
0.3655 0.8628 195 0.3388
0.3655 0.9292 210 0.3368
0.3868 0.9956 225 0.3364

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
8
Safetensors
Model size
10.2B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for neginashz/star-sft-intellect-instruct-5

Finetuned
(5)
this model

Dataset used to train neginashz/star-sft-intellect-instruct-5