Llama-3.3-70B-Instruct-quantized.w8a8

Model Overview

  • Model Architecture: Llama
    • Input: Text
    • Output: Text
  • Model Optimizations:
    • Activation quantization: INT8
    • Weight quantization: INT8
  • Intended Use Cases: Intended for commercial and research use multiple languages. Similarly to Llama-3.3-70B-Instruct, this models is intended for assistant-like chat.
  • Out-of-scope: Use in any manner that violates applicable laws or regulations (including trade compliance laws).
  • Release Date: 01/20/2025
  • Version: 1.0
  • Model Developers: Neural Magic

Quantized version of Llama-3.3-70B-Instruct. It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model, including multiple-choice, math reasoning, and open-ended text generation. Llama-3.3-70B-Instruct-quantized.w8a8 achieves 99.4% recovery for OpenLLM v1 (using Meta's prompting when available) and 100% for both HumanEval and HumanEval+ pass@1.

Model Optimizations

This model was obtained by quantizing the weights and activations of Llama-3.3-70B-Instruct to INT8 data type. This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x). Weight quantization also reduces disk size requirements by approximately 50%.

Only weights and activations of the linear operators within transformers blocks are quantized. Weights are quantized with a symmetric static per-channel scheme, where a fixed linear scaling factor is applied between INT8 and floating point representations for each output channel dimension. Activations are quantized with a symmetric dynamic per-token scheme, computing a linear scaling factor at runtime for each token between INT8 and floating point representations.

Deployment

This model can be deployed efficiently using the vLLM backend, as shown in the example below.

from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8"
number_gpus = 1
max_model_len = 8192

sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)

tokenizer = AutoTokenizer.from_pretrained(model_id)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)

llm = LLM(model=model_id, tensor_parallel_size=number_gpus, max_model_len=max_model_len)

outputs = llm.generate(prompts, sampling_params)

generated_text = outputs[0].outputs[0].text
print(generated_text)

vLLM aslo supports OpenAI-compatible serving. See the documentation for more details.

Creation

This model was created by using the llm-compressor library as presented in the code snipet below.

from transformers import AutoTokenizer, AutoModelForCausalLM
from datasets import Dataset
from llmcompressor.transformers import oneshot
from llmcompressor.modifiers.quantization import GPTQModifier
import random

model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"

num_samples = 1024
max_seq_len = 8192

tokenizer = AutoTokenizer.from_pretrained(model_id)

max_token_id = len(tokenizer.get_vocab()) - 1
input_ids = [[random.randint(0, max_token_id) for _ in range(max_seq_len)] for _ in range(num_samples)]
attention_mask = num_samples * [max_seq_len * [1]]
ds = Dataset.from_dict({"input_ids": input_ids, "attention_mask": attention_mask})

recipe = GPTQModifier(
  targets="Linear",
  scheme="W8A8",
  ignore=["lm_head"],
  dampening_frac=0.01,
)

model = SparseAutoModelForCausalLM.from_pretrained(
  model_id,
  device_map="auto",
)

oneshot(
  model=model,
  dataset=ds,
  recipe=recipe,
  max_seq_length=max_seq_len,
  num_calibration_samples=num_samples,
)

model.save_pretrained("Llama-3.3-70B-Instruct-quantized.w8a8")

Evaluation

This model was evaluated on the well-known OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval+ benchmarks. In all cases, model outputs were generated with the vLLM engine.

OpenLLM v1 and v2 evaluations were conducted using Neural Magic's fork of lm-evaluation-harness (branch llama_3.1_instruct). This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of Meta-Llama-3.1-Instruct-evals and a few fixes to OpenLLM v2 tasks.

HumanEval and HumanEval+ evaluations were conducted using Neural Magic's fork of the EvalPlus repository.

Accuracy

Category Benchmark Llama-3.3-70B-Instruct Llama-3.3-70B-Instruct-quantized.w8a8 (this model) Recovery
OpenLLM v1 MMLU (5-shot) 81.60 81.19 99.5%
MMLU (CoT, 0-shot) 86.58 85.92 99.2%
ARC Challenge (0-shot) 49.23 48.04 97.6%
GSM-8K (CoT, 8-shot, strict-match) 94.16 94.01 99.8%
Hellaswag (10-shot) 86.49 86.47 100.0%
Winogrande (5-shot) 84.77 83.74 98.8%
TruthfulQA (0-shot, mc2) 62.75 63.09 99.5%
Average 77.94 77.49 99.4%
OpenLLM v2 MMLU-Pro (5-shot) 51.89 51.59 99.7%
IFEval (0-shot) 90.89 90.68 99.4%
BBH (3-shot) 63.15 62.54 99.0%
Math-lvl-5 (4-shot) 0.17 0.00 N/A
GPQA (0-shot) 46.10 46.44 100.8%
MuSR (0-shot) 44.35 44.34 100.0%
Average 49.42 49.27 99.7%
Coding HumanEval pass@1 83.20 83.30 100.1%
HumanEval+ pass@1 78.40 78.60 100.3%
Multilingual Portuguese MMLU (5-shot) 79.76 79.47 99.6%
Spanish MMLU (5-shot) 79.33 79.23 99.9%
Italian MMLU (5-shot) 79.15 78.80 99.6%
German MMLU (5-shot) 77.94 77.92 100.0%
French MMLU (5-shot) 75.69 75.79 100.1%
Hindi MMLU (5-shot) 73.81 73.49 99.6%
Thai MMLU (5-shot) 71.97 71.44 99.2%

Reproduction

The results were obtained using the following commands:

MMLU

lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
  --tasks mmlu_llama_3.1_instruct \
  --fewshot_as_multiturn \
  --apply_chat_template \
  --num_fewshot 5 \
  --batch_size auto

MMLU-CoT

lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=4064,max_gen_toks=1024,tensor_parallel_size=1 \
  --tasks mmlu_cot_0shot_llama_3.1_instruct \
  --apply_chat_template \
  --num_fewshot 0 \
  --batch_size auto

ARC-Challenge

lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3940,max_gen_toks=100,tensor_parallel_size=1 \
  --tasks arc_challenge_llama_3.1_instruct \
  --apply_chat_template \
  --num_fewshot 0 \
  --batch_size auto

GSM-8K

lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=4096,max_gen_toks=1024,tensor_parallel_size=1 \
  --tasks gsm8k_cot_llama_3.1_instruct \
  --fewshot_as_multiturn \
  --apply_chat_template \
  --num_fewshot 8 \
  --batch_size auto

Hellaswag

lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
  --tasks hellaswag \
  --num_fewshot 10 \
  --batch_size auto

Winogrande

lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
  --tasks winogrande \
  --num_fewshot 5 \
  --batch_size auto

TruthfulQA

lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
  --tasks truthfulqa \
  --num_fewshot 0 \
  --batch_size auto

OpenLLM v2

lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \
  --apply_chat_template \
  --fewshot_as_multiturn \
  --tasks leaderboard \
  --batch_size auto

MMLU Portuguese

lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
  --tasks mmlu_pt_llama_3.1_instruct \
  --fewshot_as_multiturn \
  --apply_chat_template \
  --num_fewshot 5 \
  --batch_size auto

MMLU Spanish

lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
  --tasks mmlu_es_llama_3.1_instruct \
  --fewshot_as_multiturn \
  --apply_chat_template \
  --num_fewshot 5 \
  --batch_size auto

MMLU Italian

lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
  --tasks mmlu_it_llama_3.1_instruct \
  --fewshot_as_multiturn \
  --apply_chat_template \
  --num_fewshot 5 \
  --batch_size auto

MMLU German

lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
  --tasks mmlu_de_llama_3.1_instruct \
  --fewshot_as_multiturn \
  --apply_chat_template \
  --num_fewshot 5 \
  --batch_size auto

MMLU French

lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
  --tasks mmlu_fr_llama_3.1_instruct \
  --fewshot_as_multiturn \
  --apply_chat_template \
  --num_fewshot 5 \
  --batch_size auto

MMLU Hindi

lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
  --tasks mmlu_hi_llama_3.1_instruct \
  --fewshot_as_multiturn \
  --apply_chat_template \
  --num_fewshot 5 \
  --batch_size auto

MMLU Thai

lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
  --tasks mmlu_th_llama_3.1_instruct \
  --fewshot_as_multiturn \
  --apply_chat_template \
  --num_fewshot 5 \
  --batch_size auto

HumanEval and HumanEval+

Generation
python3 codegen/generate.py \
  --model neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8 \
  --bs 16 \
  --temperature 0.2 \
  --n_samples 50 \
  --root "." \
  --dataset humaneval
Sanitization
python3 evalplus/sanitize.py \
  humaneval/neuralmagic-ent--Llama-3.3-70B-Instruct-quantized.w8a8_vllm_temp_0.2
Evaluation
evalplus.evaluate \
  --dataset humaneval \
  --samples humaneval/neuralmagic-ent--Llama-3.3-70B-Instruct-quantized.w8a8_vllm_temp_0.2-sanitized
Downloads last month
190
Safetensors
Model size
70.6B params
Tensor type
BF16
·
I8
·
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8

Quantized
(79)
this model

Collection including neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8