granite-3.1-2b-base-quantized.w8a8
Model Overview
- Model Architecture: granite-3.1-2b-base
- Input: Text
- Output: Text
- Model Optimizations:
- Weight quantization: INT8
- Activation quantization: INT8
- Release Date: 1/8/2025
- Version: 1.0
- Model Developers: Neural Magic
Quantized version of ibm-granite/granite-3.1-2b-base. It achieves an average score of xxxx on the OpenLLM benchmark (version 1), whereas the unquantized model achieves xxxx.
Model Optimizations
This model was obtained by quantizing the weights and activations of ibm-granite/granite-3.1-2b-base to INT8 data type, ready for inference with vLLM >= 0.5.2. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized.
Deployment
Use with vLLM
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
max_model_len, tp_size = 4096, 1
model_name = "neuralmagic/granite-3.1-2b-base-quantized.w8a8"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
messages_list = [
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
]
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)
vLLM also supports OpenAI-compatible serving. See the documentation for more details.
Creation
This model was created with llm-compressor by running the code snippet below.
Model Creation Code
python quantize.py --model_path ibm-granite/granite-3.1-2b-base --quant_path "output_dir/granite-3.1-2b-base-quantized.w8a8" --calib_size 1024 --dampening_frac 0.01 --observer mse
from datasets import load_dataset
from transformers import AutoTokenizer
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot, apply
import argparse
from compressed_tensors.quantization import QuantizationScheme, QuantizationArgs, QuantizationType, QuantizationStrategy
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str)
parser.add_argument('--quant_path', type=str)
parser.add_argument('--calib_size', type=int, default=256)
parser.add_argument('--dampening_frac', type=float, default=0.1)
parser.add_argument('--observer', type=str, default="minmax")
args = parser.parse_args()
model = SparseAutoModelForCausalLM.from_pretrained(
args.model_path,
device_map="auto",
torch_dtype="auto",
use_cache=False,
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
NUM_CALIBRATION_SAMPLES = args.calib_size
DATASET_ID = "neuralmagic/LLM_compression_calibration"
DATASET_SPLIT = "train"
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
def preprocess(example):
concat_txt = example["baseion"] + "\n" + example["output"]
return {"text": concat_txt}
ds = ds.map(preprocess)
def tokenize(sample):
return tokenizer(
sample["text"],
padding=False,
truncation=False,
add_special_tokens=True,
)
ds = ds.map(tokenize, remove_columns=ds.column_names)
ignore=["lm_head"]
mappings=[
[["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"], "re:.*input_layernorm"],
[["re:.*gate_proj", "re:.*up_proj"], "re:.*post_attention_layernorm"],
[["re:.*down_proj"], "re:.*up_proj"]
]
recipe = [
SmoothQuantModifier(smoothing_strength=0.7, ignore=ignore, mappings=mappings),
GPTQModifier(
targets=["Linear"],
ignore=["lm_head"],
scheme="W8A8",
dampening_frac=args.dampening_frac,
observer=args.observer,
)
]
oneshot(
model=model,
dataset=ds,
recipe=recipe,
num_calibration_samples=args.calib_size,
max_seq_length=8196,
)
# Save to disk compressed.
model.save_pretrained(quant_path, save_compressed=True)
tokenizer.save_pretrained(quant_path)
Evaluation
The model was evaluated on OpenLLM Leaderboard V1, OpenLLM Leaderboard V2 and on HumanEval, using the following commands:
Evaluation Commands
OpenLLM Leaderboard V1:
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/granite-3.1-2b-base-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
--tasks openllm \
--write_out \
--batch_size auto \
--output_path output_dir \
--show_config
HumanEval
Generation
python3 codegen/generate.py \
--model neuralmagic/granite-3.1-2b-base-quantized.w8a8 \
--bs 16 \
--temperature 0.2 \
--n_samples 50 \
--root "." \
--dataset humaneval
Sanitization
python3 evalplus/sanitize.py \
humaneval/neuralmagic--granite-3.1-2b-base-quantized.w8a8_vllm_temp_0.2
Evaluation
evalplus.evaluate \
--dataset humaneval \
--samples humaneval/neuralmagic--granite-3.1-2b-base-quantized.w8a8_vllm_temp_0.2-sanitized
Accuracy
Category | Metric | ibm-granite/granite-3.1-2b-base | neuralmagic-ent/granite-3.1-2b-base-quantized.w8a8 | Recovery (%) |
---|---|---|---|---|
OpenLLM V1 | ARC-Challenge (Acc-Norm, 25-shot) | 53.75 | 54.01 | 100.48 |
GSM8K (Strict-Match, 5-shot) | 47.84 | 46.55 | 97.30 | |
HellaSwag (Acc-Norm, 10-shot) | 77.94 | 77.94 | 100.00 | |
MMLU (Acc, 5-shot) | 52.88 | 52.34 | 98.98 | |
TruthfulQA (MC2, 0-shot) | 39.04 | 38.12 | 97.64 | |
Winogrande (Acc, 5-shot) | 74.43 | 74.35 | 99.89 | |
Average Score | 57.65 | 57.22 | 99.26 | |
Coding | HumanEval Pass@1 | 30.00 | 29.60 | 98.67 |
- Downloads last month
- 15
Model tree for neuralmagic/granite-3.1-2b-base-quantized.w8a8
Base model
ibm-granite/granite-3.1-2b-base