File size: 15,870 Bytes
d4bd631
 
667fb88
 
d4bd631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29ef852
d4bd631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a4d074
d4bd631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a4d074
 
d4bd631
667fb88
9ba2b30
667fb88
 
 
d4bd631
667fb88
9b7d485
667fb88
3d860fc
9b7d485
d4bd631
667fb88
 
 
 
 
 
 
 
 
 
 
9b7d485
667fb88
 
 
 
 
 
 
 
 
3d860fc
667fb88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4bd631
 
 
667fb88
d4bd631
3d860fc
 
 
 
 
 
 
667fb88
3d860fc
667fb88
 
 
 
 
 
 
 
 
 
 
 
 
3d860fc
667fb88
 
 
cf03315
 
d4bd631
3a4d074
d4bd631
 
 
3a4d074
d4bd631
3a4d074
 
 
d4bd631
 
 
 
3a4d074
d4bd631
 
 
 
 
 
 
3a4d074
 
 
 
 
 
 
 
 
 
 
 
d4bd631
 
 
 
3a4d074
d4bd631
 
 
 
 
 
 
 
 
3a4d074
d4bd631
 
 
 
 
3a4d074
d4bd631
3a4d074
d4bd631
 
 
3a4d074
 
 
 
 
 
 
 
 
 
 
 
 
1b5a84f
3a4d074
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b5a84f
3a4d074
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27866cc
3a4d074
 
 
 
 
 
 
 
d4bd631
29ef852
 
 
 
 
 
 
3a4d074
 
 
 
 
 
 
 
 
29ef852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
---
tags:
- w8a8
- int8
- vllm
license: apache-2.0
license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
language:
  - en
base_model: ibm-granite/granite-3.1-8b-instruct
library_name: transformers
---

# granite-3.1-8b-instruct-quantized.w8a8

## Model Overview
- **Model Architecture:** granite-3.1-8b-instruct
  - **Input:** Text
  - **Output:** Text
- **Model Optimizations:**
  - **Weight quantization:** INT8
  - **Activation quantization:** INT8
- **Release Date:** 1/8/2025
- **Version:** 1.0
- **Model Developers:** Neural Magic

Quantized version of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct).
It achieves an average score of 70.26 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 70.30.

### Model Optimizations

This model was obtained by quantizing the weights and activations of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct) to INT8 data type, ready for inference with vLLM >= 0.5.2.
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized. 

## Deployment

### Use with vLLM

This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.

```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

max_model_len, tp_size = 4096, 1
model_name = "neuralmagic/granite-3.1-8b-instruct-quantized.w8a8"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])

messages_list = [
    [{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
]

prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]

outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)

generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)
```

vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.

## Creation

This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. 
<details>
  <summary>Model Creation Code</summary>

```bash
python quantize.py --model_path ibm-granite/granite-3.1-8b-instruct --quant_path "output_dir/granite-3.1-8b-instruct-quantized.w8a8" --calib_size 3072 --dampening_frac 0.1 --observer mse
```


```python
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
from llmcompressor.transformers import oneshot, apply
import argparse
from compressed_tensors.quantization import QuantizationScheme, QuantizationArgs, QuantizationType, QuantizationStrategy


parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str)
parser.add_argument('--quant_path', type=str)
parser.add_argument('--calib_size', type=int, default=256)
parser.add_argument('--dampening_frac', type=float, default=0.1) 
parser.add_argument('--observer', type=str, default="minmax")
args = parser.parse_args()

model = AutoModelForCausalLM.from_pretrained(
    args.model_path,
    device_map="auto",
    torch_dtype="auto",
    use_cache=False,
    trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(args.model_path)

NUM_CALIBRATION_SAMPLES = args.calib_size
DATASET_ID = "neuralmagic/LLM_compression_calibration"
DATASET_SPLIT = "train"
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))

def preprocess(example):
    concat_txt = example["instruction"] + "\n" + example["output"]
    return {"text": concat_txt}

ds = ds.map(preprocess)

def tokenize(sample):
    return tokenizer(
        sample["text"],
        padding=False,
        truncation=False,
        add_special_tokens=True,
    )


ds = ds.map(tokenize, remove_columns=ds.column_names)

ignore=["lm_head"]
mappings=[
    [["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"], "re:.*input_layernorm"],
    [["re:.*gate_proj", "re:.*up_proj"], "re:.*post_attention_layernorm"],
    [["re:.*down_proj"], "re:.*up_proj"]
]

recipe = [
    SmoothQuantModifier(smoothing_strength=0.8, ignore=ignore, mappings=mappings),
    GPTQModifier(
        targets=["Linear"],
        ignore=["lm_head"],
        scheme="W8A8",
        dampening_frac=args.dampening_frac,
        observer=args.observer,
    )
]
oneshot(
    model=model,
    dataset=ds,
    recipe=recipe,
    num_calibration_samples=args.calib_size,
    max_seq_length=8196,
)

# Save to disk compressed.
model.save_pretrained(quant_path, save_compressed=True)
tokenizer.save_pretrained(quant_path)
```
</details>

## Evaluation

The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard), OpenLLM Leaderboard [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/) and on [HumanEval](https://github.com/neuralmagic/evalplus), using the following commands:

<details>
<summary>Evaluation Commands</summary>
  
OpenLLM Leaderboard V1:
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/granite-3.1-8b-instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
  --tasks openllm \
  --write_out \
  --batch_size auto \
  --output_path output_dir \
  --show_config
```

OpenLLM Leaderboard V2:
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/granite-3.1-8b-instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
  --tasks leaderboard \
  --write_out \
  --batch_size auto \
  --output_path output_dir \
  --show_config
```

#### HumanEval
##### Generation
```
python3 codegen/generate.py \
  --model neuralmagic/granite-3.1-8b-instruct-quantized.w8a8 \
  --bs 16 \
  --temperature 0.2 \
  --n_samples 50 \
  --root "." \
  --dataset humaneval
```
##### Sanitization
```
python3 evalplus/sanitize.py \
  humaneval/neuralmagic--granite-3.1-8b-instruct-quantized.w8a8_vllm_temp_0.2
```
##### Evaluation
```
evalplus.evaluate \
  --dataset humaneval \
  --samples humaneval/neuralmagic--granite-3.1-8b-instruct-quantized.w8a8_vllm_temp_0.2-sanitized
```
</details>

### Accuracy

<table>
  <thead>
    <tr>
      <th>Category</th>
      <th>Metric</th>
      <th>ibm-granite/granite-3.1-8b-instruct</th>
      <th>neuralmagic/granite-3.1-8b-instruct-quantized.w8a8</th>
      <th>Recovery (%)</th>
    </tr>
  </thead>
  <tbody>
    <!-- OpenLLM Leaderboard V1 -->
    <tr>
      <td rowspan="7"><b>OpenLLM V1</b></td>
      <td>ARC-Challenge (Acc-Norm, 25-shot)</td>
      <td>66.81</td>
      <td>67.06</td>
      <td>100.37</td>
    </tr>
    <tr>
      <td>GSM8K (Strict-Match, 5-shot)</td>
      <td>64.52</td>
      <td>65.66</td>
      <td>101.77</td>
    </tr>
    <tr>
      <td>HellaSwag (Acc-Norm, 10-shot)</td>
      <td>84.18</td>
      <td>83.93</td>
      <td>99.70</td>
    </tr>
    <tr>
      <td>MMLU (Acc, 5-shot)</td>
      <td>65.52</td>
      <td>65.03</td>
      <td>99.25</td>
    </tr>
    <tr>
      <td>TruthfulQA (MC2, 0-shot)</td>
      <td>60.57</td>
      <td>60.02</td>
      <td>99.09</td>
    </tr>
    <tr>
      <td>Winogrande (Acc, 5-shot)</td>
      <td>80.19</td>
      <td>79.87</td>
      <td>99.60</td>
    </tr>
    <tr>
      <td><b>Average Score</b></td>
      <td><b>70.30</b></td>
      <td><b>70.26</b></td>
      <td><b>99.95</b></td>
    </tr>
    <!-- OpenLLM Leaderboard V2 -->
    <tr>
      <td rowspan="7"><b>OpenLLM V2</b></td>
      <td>IFEval (Inst Level Strict Acc, 0-shot)</td>
      <td>74.01</td>
      <td>73.50</td>
      <td>99.31</td>
    </tr>
    <tr>
      <td>BBH (Acc-Norm, 3-shot)</td>
      <td>53.19</td>
      <td>52.59</td>
      <td>98.87</td>
    </tr>
    <tr>
      <td>Math-Hard (Exact-Match, 4-shot)</td>
      <td>14.77</td>
      <td>15.73</td>
      <td>106.50</td>
    </tr>
    <tr>
      <td>GPQA (Acc-Norm, 0-shot)</td>
      <td>31.76</td>
      <td>30.62</td>
      <td>96.40</td>
    </tr>
    <tr>
      <td>MUSR (Acc-Norm, 0-shot)</td>
      <td>46.01</td>
      <td>44.30</td>
      <td>96.28</td>
    </tr>
    <tr>
      <td>MMLU-Pro (Acc, 5-shot)</td>
      <td>35.81</td>
      <td>35.41</td>
      <td>98.88</td>
    </tr>
    <tr>
      <td><b>Average Score</b></td>
      <td><b>42.61</b></td>
      <td><b>42.03</b></td>
      <td><b>98.64</b></td>
    </tr>
    <!-- HumanEval -->
    <tr>
      <td rowspan="2"><b>Coding</b></td>
      <td>HumanEval Pass@1</td>
      <td>71.00</td>
      <td>70.50</td>
      <td><b>99.30</b></td>
    </tr>
  </tbody>
</table>



## Inference Performance


This model achieves up to 1.6x speedup in single-stream deployment and up to 1.7x speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario.
The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.6.6.post1, and [GuideLLM](https://github.com/neuralmagic/guidellm).

<details>
<summary>Benchmarking Command</summary>

```
guidellm --model neuralmagic/granite-3.1-8b-instruct-quantized.w8a8 --target "http://localhost:8000/v1" --data-type emulated --data "prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>" --max seconds 360 --backend aiohttp_server
```

</details>

### Single-stream performance (measured with vLLM version 0.6.6.post1)
<table>
  <tr>
    <td></td>
    <td></td>
    <td></td>
    <th style="text-align: center;" colspan="7" >Latency (s)</th>
  </tr>
  <tr>
    <th>GPU class</th>
    <th>Model</th>
    <th>Speedup</th>
    <th>Code Completion<br>prefill: 256 tokens<br>decode: 1024 tokens</th>
    <th>Docstring Generation<br>prefill: 768 tokens<br>decode: 128 tokens</th>
    <th>Code Fixing<br>prefill: 1024 tokens<br>decode: 1024 tokens</th>
    <th>RAG<br>prefill: 1024 tokens<br>decode: 128 tokens</th>
    <th>Instruction Following<br>prefill: 256 tokens<br>decode: 128 tokens</th>
    <th>Multi-turn Chat<br>prefill: 512 tokens<br>decode: 256 tokens</th>
    <th>Large Summarization<br>prefill: 4096 tokens<br>decode: 512 tokens</th>
  </tr>
  <tr>
    <td style="vertical-align: middle;" rowspan="3" >A5000</td>
    <td>granite-3.1-8b-instruct</td>
    <td></td>
    <td>28.3</td>
    <td>3.7</td>
    <td>28.8</td>
    <td>3.8</td>
    <td>3.6</td>
    <td>7.2</td>
    <td>15.7</td>
  </tr>
  <tr>
    <td>granite-3.1-8b-instruct-quantized.w8a8<br>(this model)</td>
    <td>1.60</td>
    <td>17.7</td>
    <td>2.3</td>
    <td>18.0</td>
    <td>2.4</td>
    <td>2.2</td>
    <td>4.5</td>
    <td>10.0</td>
  </tr>
  <tr>
    <td>granite-3.1-8b-instruct-quantized.w4a16</td>
    <td>2.61</td>
    <td>10.3</td>
    <td>1.5</td>
    <td>10.7</td>
    <td>1.5</td>
    <td>1.3</td>
    <td>2.7</td>
    <td>6.6</td>
  </tr>
  <tr>
    <td style="vertical-align: middle;" rowspan="3" >A6000</td>
    <td>granite-3.1-8b-instruct</td>
    <td></td>
    <td>25.8</td>
    <td>3.4</td>
    <td>26.2</td>
    <td>3.4</td>
    <td>3.3</td>
    <td>6.5</td>
    <td>14.2</td>
  </tr>
  <tr>
    <td>granite-3.1-8b-instruct-quantized.w8a8<br>(this model)</td>
    <td>1.50</td>
    <td>17.4</td>
    <td>2.3</td>
    <td>16.9</td>
    <td>2.2</td>
    <td>2.2</td>
    <td>4.4</td>
    <td>9.8</td>
  </tr>
  <tr>
    <td>granite-3.1-8b-instruct-quantized.w4a16</td>
    <td>2.48</td>
    <td>10.0</td>
    <td>1.4</td>
    <td>10.4</td>
    <td>1.5</td>
    <td>1.3</td>
    <td>2.5</td>
    <td>6.2</td>
  </tr>
  <tr>
    <td style="vertical-align: middle;" rowspan="3" >A100</td>
    <td>granite-3.1-8b-instruct</td>
    <td></td>
    <td>13.6</td>
    <td>1.8</td>
    <td>13.7</td>
    <td>1.8</td>
    <td>1.7</td>
    <td>3.4</td>
    <td>7.3</td>
  </tr>
  <tr>
    <td>granite-3.1-8b-instruct-quantized.w8a8<br>(this model)</td>
    <td>1.31</td>
    <td>10.4</td>
    <td>1.3</td>
    <td>10.5</td>
    <td>1.4</td>
    <td>1.3</td>
    <td>2.6</td>
    <td>5.6</td>
  </tr>
  <tr>
    <td>granite-3.1-8b-instruct-quantized.w4a16</td>
    <td>1.80</td>
    <td>7.3</td>
    <td>1.0</td>
    <td>7.4</td>
    <td>1.0</td>
    <td>0.9</td>
    <td>1.9</td>
    <td>4.3</td>
  </tr>
</table>


### Multi-stream asynchronous performance (measured with vLLM version 0.6.6.post1)
<table>
  <tr>
    <td></td>
    <td></td>
    <td></td>
    <th style="text-align: center;" colspan="7" >Maximum Throughput (Queries per Second)</th>
  </tr>
  <tr>
    <th>GPU class</th>
    <th>Model</th>
    <th>Speedup</th>
    <th>Code Completion<br>prefill: 256 tokens<br>decode: 1024 tokens</th>
    <th>Docstring Generation<br>prefill: 768 tokens<br>decode: 128 tokens</th>
    <th>Code Fixing<br>prefill: 1024 tokens<br>decode: 1024 tokens</th>
    <th>RAG<br>prefill: 1024 tokens<br>decode: 128 tokens</th>
    <th>Instruction Following<br>prefill: 256 tokens<br>decode: 128 tokens</th>
    <th>Multi-turn Chat<br>prefill: 512 tokens<br>decode: 256 tokens</th>
    <th>Large Summarization<br>prefill: 4096 tokens<br>decode: 512 tokens</th>
  </tr>
  <tr>
    <td style="vertical-align: middle;" rowspan="3" >A5000</td>
    <td>granite-3.1-8b-instruct</td>
    <td></td>
    <td>0.8</td>
    <td>3.1</td>
    <td>0.4</td>
    <td>2.5</td>
    <td>6.7</td>
    <td>2.7</td>
    <td>0.3</td>
  </tr>
  <tr>
    <td>granite-3.1-8b-instruct-quantized.w8a8<br>(this model)</td>
    <td>1.71</td>
    <td>1.3</td>
    <td>5.2</td>
    <td>0.9</td>
    <td>4.0</td>
    <td>10.5</td>
    <td>4.4</td>
    <td>0.5</td>
  </tr>
  <tr>
    <td>granite-3.1-8b-instruct-quantized.w4a16</td>
    <td>1.46</td>
    <td>1.3</td>
    <td>3.9</td>
    <td>0.8</td>
    <td>2.9</td>
    <td>8.2</td>
    <td>3.6</td>
    <td>0.5</td>
  </tr>
  <tr>
    <td style="vertical-align: middle;" rowspan="3" >A6000</td>
    <td>granite-3.1-8b-instruct</td>
    <td></td>
    <td>1.3</td>
    <td>5.1</td>
    <td>0.9</td>
    <td>4.0</td>
    <td>0.3</td>
    <td>4.3</td>
    <td>0.6</td>
  </tr>
  <tr>
    <td>granite-3.1-8b-instruct-quantized.w8a8<br>(this model)</td>
    <td>1.39</td>
    <td>1.8</td>
    <td>7.0</td>
    <td>1.3</td>
    <td>5.6</td>
    <td>14.0</td>
    <td>6.3</td>
    <td>0.8</td>
  </tr>
  <tr>
    <td>granite-3.1-8b-instruct-quantized.w4a16</td>
    <td>1.09</td>
    <td>1.9</td>
    <td>4.8</td>
    <td>1.0</td>
    <td>3.8</td>
    <td>10.0</td>
    <td>5.0</td>
    <td>0.6</td>
  </tr>
  <tr>
    <td style="vertical-align: middle;" rowspan="3" >A100</td>
    <td>granite-3.1-8b-instruct</td>
    <td></td>
    <td>3.1</td>
    <td>10.7</td>
    <td>2.1</td>
    <td>8.5</td>
    <td>20.6</td>
    <td>9.6</td>
    <td>1.4</td>
  </tr>
  <tr>
    <td>granite-3.1-8b-instruct-quantized.w8a8<br>(this model)</td>
    <td>1.23</td>
    <td>3.8</td>
    <td>14.2</td>
    <td>2.1</td>
    <td>11.4</td>
    <td>25.9</td>
    <td>12.1</td>
    <td>1.7</td>
  </tr>
  <tr>
    <td>granite-3.1-8b-instruct-quantized.w4a16</td>
    <td>0.96</td>
    <td>3.4</td>
    <td>9.0</td>
    <td>2.6</td>
    <td>7.2</td>
    <td>18.0</td>
    <td>8.8</td>
    <td>1.3</td>
  </tr>
</table>