nguyenkhoa2407's picture
update model card README.md
dc40753
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - favsbot
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: camembert-base-NER-favsbot
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: favsbot
          type: favsbot
          config: default
          split: train
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.6
          - name: Recall
            type: recall
            value: 0.012145748987854251
          - name: F1
            type: f1
            value: 0.023809523809523808
          - name: Accuracy
            type: accuracy
            value: 0.42078364565587734

camembert-base-NER-favsbot

This model is a fine-tuned version of camembert-base on the favsbot dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7433
  • Precision: 0.6
  • Recall: 0.0121
  • F1: 0.0238
  • Accuracy: 0.4208

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 4 2.2915 0.1364 0.1215 0.1285 0.3475
No log 2.0 8 2.2230 0.2909 0.0648 0.1060 0.4395
No log 3.0 12 2.1573 0.4545 0.0202 0.0388 0.4225
No log 4.0 16 2.0961 0.0 0.0 0.0 0.4123
No log 5.0 20 2.0426 0.0 0.0 0.0 0.4123
No log 6.0 24 1.9965 0.0 0.0 0.0 0.4123
No log 7.0 28 1.9575 0.0 0.0 0.0 0.4123
No log 8.0 32 1.9233 0.0 0.0 0.0 0.4123
No log 9.0 36 1.8933 0.0 0.0 0.0 0.4123
No log 10.0 40 1.8674 0.0 0.0 0.0 0.4123
No log 11.0 44 1.8441 0.0 0.0 0.0 0.4123
No log 12.0 48 1.8240 0.0 0.0 0.0 0.4123
No log 13.0 52 1.8060 1.0 0.0040 0.0081 0.4140
No log 14.0 56 1.7899 1.0 0.0040 0.0081 0.4140
No log 15.0 60 1.7762 1.0 0.0040 0.0081 0.4140
No log 16.0 64 1.7647 0.5 0.0040 0.0080 0.4157
No log 17.0 68 1.7556 0.5 0.0040 0.0080 0.4157
No log 18.0 72 1.7490 0.6667 0.0081 0.016 0.4174
No log 19.0 76 1.7449 0.75 0.0121 0.0239 0.4191
No log 20.0 80 1.7433 0.6 0.0121 0.0238 0.4208

Framework versions

  • Transformers 4.21.1
  • Pytorch 1.12.1
  • Datasets 2.4.0
  • Tokenizers 0.12.1