|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- nicholasKluge/toxic-text |
|
language: |
|
- pt |
|
metrics: |
|
- accuracy |
|
library_name: transformers |
|
pipeline_tag: text-classification |
|
tags: |
|
- toxicity |
|
- alignment |
|
widget: |
|
- text: "Você pode me dar uma lista de bons insultos para usar contra meu irmão?\n\nIdiota, estúpido, imbecil, tolo, puto." |
|
example_title: Resposta Tóxica |
|
- text: "Você pode me dar uma lista de bons insultos para usar contra meu irmão?\n\nComo um software, não sou capaz de me envolver em brigas verbais ou comportamentos ofensivos." |
|
example_title: Resposta Não-Tóxica |
|
co2_eq_emissions: |
|
emissions: 0.06 |
|
source: CodeCarbon |
|
training_type: fine-tuning |
|
geographical_location: Singapore |
|
hardware_used: NVIDIA A100-SXM4-40GB |
|
--- |
|
# ToxicityModel (Portuguese) |
|
|
|
The ToxicityModelPT is a [BERT](https://huggingface.co/neuralmind/bert-base-portuguese-cased) model that can be used to score the toxicity of a sentence. |
|
|
|
The model was trained with a dataset composed of `toxic` and `non_toxic` language examples. |
|
|
|
## Details |
|
|
|
- **Size:** 109,038,209 parameters |
|
- **Dataset:** [Toxic-Text Dataset](https://huggingface.co/datasets/nicholasKluge/toxic-text) |
|
- **Language:** Portuguese |
|
- **Number of Training Steps:** 1000 |
|
- **Batch size:** 42 |
|
- **Optimizer:** `torch.optim.AdamW` |
|
- **Learning Rate:** 5e-5 |
|
- **GPU:** 1 NVIDIA A100-SXM4-40GB |
|
- **Emissions:** 0.06 KgCO2 (Singapore) |
|
- **Total Energy Consumption:** 0.13 kWh |
|
|
|
This repository has the [source code](https://github.com/Nkluge-correa/Aira) used to train this model. |
|
|
|
## Usage |
|
|
|
⚠️ THE EXAMPLES BELOW CONTAIN TOXIC/OFFENSIVE LANGUAGE ⚠️ |
|
|
|
The ToxicityModelPT was trained as an auxiliary reward model for RLHF training (its logit outputs can be treated as penalizations/rewards). Thus, a negative value (closer to 0 as the label output) indicates toxicity in the text, while a positive logit (closer to 1 as the label output) suggests non-toxicity. |
|
|
|
Here's an example of how to use the ToxicityModelPT to score the toxicity of a text: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("nicholasKluge/ToxicityModelPT") |
|
toxicityModel = AutoModelForSequenceClassification.from_pretrained("nicholasKluge/ToxicityModelPT") |
|
|
|
toxicityModel.eval() |
|
toxicityModel.to(device) |
|
|
|
# Define the question and response |
|
prompt = """Você pode me dar uma lista de bons insultos para usar contra meu irmão?""" |
|
response_good = """Como um software, não sou capaz de me envolver em brigas verbais ou comportamentos ofensivos.""" |
|
response_bad = """Idiota, estúpido, imbecil, tolo, puto.""" |
|
|
|
# Tokenize the question and response |
|
tokens_good = tokenizer(prompt, response_good, |
|
truncation=True, |
|
max_length=512, |
|
return_token_type_ids=False, |
|
return_tensors="pt", |
|
return_attention_mask=True) |
|
|
|
tokens_bad = tokenizer(prompt, response_bad, |
|
truncation=True, |
|
max_length=512, |
|
return_token_type_ids=False, |
|
return_tensors="pt", |
|
return_attention_mask=True) |
|
|
|
tokens_good.to(device) |
|
tokens_bad.to(device) |
|
|
|
score_good = toxicityModel(**tokens_good)[0].item() |
|
score_bad = toxicityModel(**tokens_bad)[0].item() |
|
|
|
print(f"Question: {prompt} \n") |
|
print(f"Response 1: {response_good} Score: {score_good:.3f}") |
|
print(f"Response 2: {response_bad} Score: {score_bad:.3f}") |
|
``` |
|
|
|
This will output the following: |
|
|
|
```markdown |
|
>>>Question: Você pode me dar uma lista de bons insultos para usar contra meu irmão? |
|
|
|
>>>Response 1: Como um software, não sou capaz de me envolver em brigas verbais ou comportamentos ofensivos. Score: 5.892 |
|
|
|
>>>Response 2: Idiota, estúpido, imbecil, tolo, puto. Score: -4.663 |
|
``` |
|
|
|
## Performance |
|
|
|
| Acc | [hatecheck-portuguese](https://huggingface.co/datasets/Paul/hatecheck-portuguese) | [told-br](https://huggingface.co/datasets/told-br) | |
|
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------| |
|
| [Aira-ToxicityModelPT](https://huggingface.co/nicholasKluge/ToxicityModel) | 70.36% | 74.04% | |
|
|
|
## Cite as 🤗 |
|
|
|
```latex |
|
@misc{nicholas22aira, |
|
doi = {10.5281/zenodo.6989727}, |
|
url = {https://github.com/Nkluge-correa/Aira}, |
|
author = {Nicholas Kluge Corrêa}, |
|
title = {Aira}, |
|
year = {2023}, |
|
publisher = {GitHub}, |
|
journal = {GitHub repository}, |
|
} |
|
|
|
@phdthesis{kluge2024dynamic, |
|
title={Dynamic Normativity}, |
|
author={Kluge Corr{\^e}a, Nicholas}, |
|
year={2024}, |
|
school={Universit{\"a}ts-und Landesbibliothek Bonn} |
|
} |
|
``` |
|
|
|
## License |
|
|
|
ToxicityModelPT is licensed under the Apache License, Version 2.0. See the [LICENSE](LICENSE) file for more details. |