niryuu/llm-jp-3-13b-ha
The Model niryuu/llm-jp-3-13b-ha was converted to MLX format from llm-jp/llm-jp-3-13b using mlx-lm version 0.20.1.
It remains compatibility with HF Transformers.
And then fine-tuned using LoRA with dataset:
- h: kanhatakeyama/ramdom-to-fixed-multiturn-Calm3
- a: Aratako/Magpie-Tanuki-8B-97k
Use for Evaluation
# -*- coding: utf-8 -*-
!pip install -U bitsandbytes
!pip install -U transformers
!pip install -U accelerate
!pip install -U datasets
!pip install -U peft
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
from peft import PeftModel
import torch
from tqdm import tqdm
import json
# Hugging Faceで取得したTokenをこちらに貼る。
HF_TOKEN = "dummy"
model_id = "niryuu/llm-jp-3-13b-ha"
# QLoRA config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
# Load model
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=bnb_config,
device_map="auto",
token = HF_TOKEN
)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN)
# load dataset
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
results = []
for data in tqdm(datasets):
input = data["input"]
token_ids = tokenizer.apply_chat_template([{"role": "user", "content": input}], tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs = model.generate(input_ids, max_new_tokens=2048, do_sample=False, repetition_penalty=1.2,)
output = tokenizer.decode(outputs[0][token_ids.size(1) :], skip_special_tokens=True)
results.append({"task_id": data["task_id"], "input": input, "output": output})
# save outputs
import re
jsonl_id = re.sub(".*/", "", model_id)
with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
f.write('\n')
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("niryuu/llm-jp-3-13b-ha")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
- Downloads last month
- 9
Model tree for niryuu/llm-jp-3-13b-ha
Base model
llm-jp/llm-jp-3-13b