Edit model card

Built with Axolotl

medusa-ELYZA-japanese-Llama-2-7b-instruct

This model is a fine-tuned version of elyza/ELYZA-japanese-Llama-2-7b-instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3564

Model description

This is a Medusa-2 created using Medusa.

Intended uses & limitations

Training and evaluation data

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 40
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
2.684 0.06 40 2.7430
2.5302 0.11 80 2.6693
2.486 0.17 120 2.6273
2.557 0.23 160 2.6020
2.4913 0.28 200 2.5868
2.5317 0.34 240 2.5646
2.4795 0.4 280 2.5521
2.4221 0.45 320 2.5359
2.4464 0.51 360 2.5231
2.4534 0.57 400 2.5095
2.4685 0.62 440 2.4967
2.4575 0.68 480 2.4849
2.4299 0.74 520 2.4771
2.459 0.79 560 2.4604
2.4585 0.85 600 2.4527
2.4832 0.91 640 2.4425
2.4255 0.96 680 2.4285
2.2209 1.02 720 2.4312
2.3142 1.07 760 2.4288
2.1961 1.13 800 2.4252
2.1394 1.19 840 2.4194
2.2005 1.24 880 2.4093
2.0748 1.3 920 2.4003
2.109 1.36 960 2.3935
2.2209 1.41 1000 2.3856
2.1938 1.47 1040 2.3786
2.1056 1.53 1080 2.3716
2.0948 1.58 1120 2.3674
2.218 1.64 1160 2.3629
2.17 1.7 1200 2.3601
2.1084 1.75 1240 2.3590
2.0446 1.81 1280 2.3567
2.1517 1.87 1320 2.3572
2.2342 1.92 1360 2.3565
2.1552 1.98 1400 2.3564

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.2
  • Datasets 2.16.1
  • Tokenizers 0.14.1
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for noguchis/medusa-ELYZA-japanese-Llama-2-7b-instruct

Quantized
(2)
this model