medusa-ELYZA-japanese-Llama-2-7b-instruct
This model is a fine-tuned version of elyza/ELYZA-japanese-Llama-2-7b-instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.3564
Model description
This is a Medusa-2 created using Medusa.
Intended uses & limitations
Training and evaluation data
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 40
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.684 | 0.06 | 40 | 2.7430 |
2.5302 | 0.11 | 80 | 2.6693 |
2.486 | 0.17 | 120 | 2.6273 |
2.557 | 0.23 | 160 | 2.6020 |
2.4913 | 0.28 | 200 | 2.5868 |
2.5317 | 0.34 | 240 | 2.5646 |
2.4795 | 0.4 | 280 | 2.5521 |
2.4221 | 0.45 | 320 | 2.5359 |
2.4464 | 0.51 | 360 | 2.5231 |
2.4534 | 0.57 | 400 | 2.5095 |
2.4685 | 0.62 | 440 | 2.4967 |
2.4575 | 0.68 | 480 | 2.4849 |
2.4299 | 0.74 | 520 | 2.4771 |
2.459 | 0.79 | 560 | 2.4604 |
2.4585 | 0.85 | 600 | 2.4527 |
2.4832 | 0.91 | 640 | 2.4425 |
2.4255 | 0.96 | 680 | 2.4285 |
2.2209 | 1.02 | 720 | 2.4312 |
2.3142 | 1.07 | 760 | 2.4288 |
2.1961 | 1.13 | 800 | 2.4252 |
2.1394 | 1.19 | 840 | 2.4194 |
2.2005 | 1.24 | 880 | 2.4093 |
2.0748 | 1.3 | 920 | 2.4003 |
2.109 | 1.36 | 960 | 2.3935 |
2.2209 | 1.41 | 1000 | 2.3856 |
2.1938 | 1.47 | 1040 | 2.3786 |
2.1056 | 1.53 | 1080 | 2.3716 |
2.0948 | 1.58 | 1120 | 2.3674 |
2.218 | 1.64 | 1160 | 2.3629 |
2.17 | 1.7 | 1200 | 2.3601 |
2.1084 | 1.75 | 1240 | 2.3590 |
2.0446 | 1.81 | 1280 | 2.3567 |
2.1517 | 1.87 | 1320 | 2.3572 |
2.2342 | 1.92 | 1360 | 2.3565 |
2.1552 | 1.98 | 1400 | 2.3564 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.1.2
- Datasets 2.16.1
- Tokenizers 0.14.1
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for noguchis/medusa-ELYZA-japanese-Llama-2-7b-instruct
Base model
elyza/ELYZA-japanese-Llama-2-7b-instruct