layoutlm-sroie / README.md
npnam693's picture
End of training
7764f7b
|
raw
history blame
11 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - sroie
model-index:
  - name: layoutlm-sroie
    results: []

layoutlm-sroie

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the sroie dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0363
  • Address: {'precision': 0.901685393258427, 'recall': 0.9250720461095101, 'f1': 0.9132290184921764, 'number': 347}
  • Company: {'precision': 0.904891304347826, 'recall': 0.9596541786743515, 'f1': 0.9314685314685315, 'number': 347}
  • Date: {'precision': 0.9913544668587896, 'recall': 0.9913544668587896, 'f1': 0.9913544668587896, 'number': 347}
  • Total: {'precision': 0.8155080213903744, 'recall': 0.8789625360230547, 'f1': 0.8460471567267684, 'number': 347}
  • Overall Precision: 0.9017
  • Overall Recall: 0.9388
  • Overall F1: 0.9199
  • Overall Accuracy: 0.9930

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Address Company Date Total Overall Precision Overall Recall Overall F1 Overall Accuracy
0.5189 1.0 40 0.1280 {'precision': 0.7891891891891892, 'recall': 0.8414985590778098, 'f1': 0.8145048814504882, 'number': 347} {'precision': 0.6987012987012987, 'recall': 0.7752161383285303, 'f1': 0.7349726775956286, 'number': 347} {'precision': 0.6651982378854625, 'recall': 0.8703170028818443, 'f1': 0.7540574282147315, 'number': 347} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 347} 0.7138 0.6218 0.6646 0.9650
0.0849 2.0 80 0.0558 {'precision': 0.8753462603878116, 'recall': 0.9106628242074928, 'f1': 0.8926553672316384, 'number': 347} {'precision': 0.8102189781021898, 'recall': 0.9596541786743515, 'f1': 0.8786279683377309, 'number': 347} {'precision': 0.9178082191780822, 'recall': 0.9654178674351584, 'f1': 0.9410112359550562, 'number': 347} {'precision': 0.5179282868525896, 'recall': 0.3746397694524496, 'f1': 0.43478260869565216, 'number': 347} 0.8026 0.8026 0.8026 0.9851
0.0447 3.0 120 0.0435 {'precision': 0.8997214484679665, 'recall': 0.930835734870317, 'f1': 0.9150141643059491, 'number': 347} {'precision': 0.8954423592493298, 'recall': 0.962536023054755, 'f1': 0.9277777777777777, 'number': 347} {'precision': 0.96045197740113, 'recall': 0.9798270893371758, 'f1': 0.9700427960057061, 'number': 347} {'precision': 0.6222222222222222, 'recall': 0.6455331412103746, 'f1': 0.6336633663366337, 'number': 347} 0.8444 0.8797 0.8617 0.9890
0.0318 4.0 160 0.0347 {'precision': 0.8777777777777778, 'recall': 0.9106628242074928, 'f1': 0.8939179632248939, 'number': 347} {'precision': 0.9153005464480874, 'recall': 0.9654178674351584, 'f1': 0.9396914446002805, 'number': 347} {'precision': 0.9913544668587896, 'recall': 0.9913544668587896, 'f1': 0.9913544668587896, 'number': 347} {'precision': 0.671957671957672, 'recall': 0.7319884726224783, 'f1': 0.7006896551724137, 'number': 347} 0.8608 0.8999 0.8799 0.9910
0.0245 5.0 200 0.0360 {'precision': 0.8885793871866295, 'recall': 0.9193083573487032, 'f1': 0.9036827195467422, 'number': 347} {'precision': 0.8909574468085106, 'recall': 0.9654178674351584, 'f1': 0.9266943291839556, 'number': 347} {'precision': 0.9913294797687862, 'recall': 0.9884726224783862, 'f1': 0.98989898989899, 'number': 347} {'precision': 0.7873754152823921, 'recall': 0.6829971181556196, 'f1': 0.7314814814814815, 'number': 347} 0.8929 0.8890 0.8910 0.9910
0.0171 6.0 240 0.0325 {'precision': 0.8932584269662921, 'recall': 0.9164265129682997, 'f1': 0.9046941678520626, 'number': 347} {'precision': 0.912568306010929, 'recall': 0.962536023054755, 'f1': 0.9368863955119215, 'number': 347} {'precision': 0.991304347826087, 'recall': 0.9855907780979827, 'f1': 0.9884393063583815, 'number': 347} {'precision': 0.823170731707317, 'recall': 0.7780979827089337, 'f1': 0.8, 'number': 347} 0.9061 0.9107 0.9084 0.9926
0.0133 7.0 280 0.0352 {'precision': 0.8969359331476323, 'recall': 0.9279538904899135, 'f1': 0.9121813031161472, 'number': 347} {'precision': 0.9103260869565217, 'recall': 0.9654178674351584, 'f1': 0.937062937062937, 'number': 347} {'precision': 0.9885057471264368, 'recall': 0.9913544668587896, 'f1': 0.9899280575539569, 'number': 347} {'precision': 0.7801608579088471, 'recall': 0.8386167146974063, 'f1': 0.8083333333333332, 'number': 347} 0.8923 0.9308 0.9111 0.9922
0.013 8.0 320 0.0338 {'precision': 0.889196675900277, 'recall': 0.9250720461095101, 'f1': 0.9067796610169492, 'number': 347} {'precision': 0.9103260869565217, 'recall': 0.9654178674351584, 'f1': 0.937062937062937, 'number': 347} {'precision': 0.9885057471264368, 'recall': 0.9913544668587896, 'f1': 0.9899280575539569, 'number': 347} {'precision': 0.7887700534759359, 'recall': 0.8501440922190202, 'f1': 0.8183079056865465, 'number': 347} 0.8925 0.9330 0.9123 0.9927
0.0105 9.0 360 0.0378 {'precision': 0.8885793871866295, 'recall': 0.9193083573487032, 'f1': 0.9036827195467422, 'number': 347} {'precision': 0.9081081081081082, 'recall': 0.968299711815562, 'f1': 0.9372384937238494, 'number': 347} {'precision': 0.9913294797687862, 'recall': 0.9884726224783862, 'f1': 0.98989898989899, 'number': 347} {'precision': 0.8096590909090909, 'recall': 0.8213256484149856, 'f1': 0.8154506437768241, 'number': 347} 0.8991 0.9244 0.9115 0.9923
0.0094 10.0 400 0.0353 {'precision': 0.901685393258427, 'recall': 0.9250720461095101, 'f1': 0.9132290184921764, 'number': 347} {'precision': 0.904891304347826, 'recall': 0.9596541786743515, 'f1': 0.9314685314685315, 'number': 347} {'precision': 0.9913544668587896, 'recall': 0.9913544668587896, 'f1': 0.9913544668587896, 'number': 347} {'precision': 0.8142076502732241, 'recall': 0.8587896253602305, 'f1': 0.8359046283309958, 'number': 347} 0.9019 0.9337 0.9175 0.9929
0.0078 11.0 440 0.0373 {'precision': 0.8938547486033519, 'recall': 0.9221902017291066, 'f1': 0.9078014184397163, 'number': 347} {'precision': 0.9098360655737705, 'recall': 0.9596541786743515, 'f1': 0.9340813464235624, 'number': 347} {'precision': 0.9913544668587896, 'recall': 0.9913544668587896, 'f1': 0.9913544668587896, 'number': 347} {'precision': 0.8150134048257373, 'recall': 0.8760806916426513, 'f1': 0.8444444444444444, 'number': 347} 0.9010 0.9373 0.9188 0.9928
0.0074 12.0 480 0.0379 {'precision': 0.8994413407821229, 'recall': 0.9279538904899135, 'f1': 0.9134751773049646, 'number': 347} {'precision': 0.9128065395095368, 'recall': 0.9654178674351584, 'f1': 0.938375350140056, 'number': 347} {'precision': 0.9913544668587896, 'recall': 0.9913544668587896, 'f1': 0.9913544668587896, 'number': 347} {'precision': 0.835195530726257, 'recall': 0.861671469740634, 'f1': 0.8482269503546098, 'number': 347} 0.9091 0.9366 0.9226 0.9931
0.007 13.0 520 0.0357 {'precision': 0.9019607843137255, 'recall': 0.9279538904899135, 'f1': 0.9147727272727272, 'number': 347} {'precision': 0.9024390243902439, 'recall': 0.9596541786743515, 'f1': 0.9301675977653631, 'number': 347} {'precision': 0.9913544668587896, 'recall': 0.9913544668587896, 'f1': 0.9913544668587896, 'number': 347} {'precision': 0.8328767123287671, 'recall': 0.8760806916426513, 'f1': 0.853932584269663, 'number': 347} 0.9061 0.9388 0.9222 0.9932
0.0069 14.0 560 0.0361 {'precision': 0.901685393258427, 'recall': 0.9250720461095101, 'f1': 0.9132290184921764, 'number': 347} {'precision': 0.9051490514905149, 'recall': 0.962536023054755, 'f1': 0.9329608938547486, 'number': 347} {'precision': 0.9913544668587896, 'recall': 0.9913544668587896, 'f1': 0.9913544668587896, 'number': 347} {'precision': 0.8046875, 'recall': 0.8904899135446686, 'f1': 0.8454172366621068, 'number': 347} 0.8984 0.9424 0.9198 0.9930
0.0065 15.0 600 0.0363 {'precision': 0.901685393258427, 'recall': 0.9250720461095101, 'f1': 0.9132290184921764, 'number': 347} {'precision': 0.904891304347826, 'recall': 0.9596541786743515, 'f1': 0.9314685314685315, 'number': 347} {'precision': 0.9913544668587896, 'recall': 0.9913544668587896, 'f1': 0.9913544668587896, 'number': 347} {'precision': 0.8155080213903744, 'recall': 0.8789625360230547, 'f1': 0.8460471567267684, 'number': 347} 0.9017 0.9388 0.9199 0.9930

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.12.1