|
--- |
|
base_model: |
|
- aubmindlab/bert-base-arabertv02 |
|
language: |
|
- ar |
|
model-index: |
|
- name: omarelshehy/Arabic-Retrieval-v1.0 |
|
results: |
|
- dataset: |
|
config: ar |
|
name: MTEB MIRACLRetrieval (ar) |
|
revision: main |
|
split: dev |
|
type: miracl/mmteb-miracl |
|
metrics: |
|
- type: main_score |
|
value: 58.664 |
|
- type: map_at_1 |
|
value: 32.399 |
|
- type: map_at_10 |
|
value: 50.236000000000004 |
|
- type: map_at_100 |
|
value: 51.87199999999999 |
|
- type: map_at_1000 |
|
value: 51.926 |
|
- type: ndcg_at_1 |
|
value: 48.376999999999995 |
|
- type: ndcg_at_10 |
|
value: 58.664 |
|
- type: ndcg_at_100 |
|
value: 63.754999999999995 |
|
- type: ndcg_at_1000 |
|
value: 64.672 |
|
- type: ndcg_at_20 |
|
value: 61.111000000000004 |
|
- type: ndcg_at_3 |
|
value: 51.266 |
|
- type: ndcg_at_5 |
|
value: 54.529 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: ar |
|
name: MTEB MIRACLRetrievalHardNegatives (ar) |
|
revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb |
|
split: dev |
|
type: mteb/miracl-hard-negatives |
|
metrics: |
|
- type: main_score |
|
value: 60.026 |
|
- type: map_at_1 |
|
value: 32.547 |
|
- type: map_at_10 |
|
value: 51.345 |
|
- type: map_at_100 |
|
value: 53.190000000000005 |
|
- type: map_at_1000 |
|
value: 53.237 |
|
- type: ndcg_at_1 |
|
value: 48.3 |
|
- type: ndcg_at_10 |
|
value: 60.026 |
|
- type: ndcg_at_100 |
|
value: 65.62400000000001 |
|
- type: ndcg_at_1000 |
|
value: 66.282 |
|
- type: ndcg_at_20 |
|
value: 62.856 |
|
- type: ndcg_at_3 |
|
value: 52.1 |
|
- type: ndcg_at_5 |
|
value: 55.627 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: ara-ara |
|
name: MTEB MLQARetrieval (ara-ara) |
|
revision: 397ed406c1a7902140303e7faf60fff35b58d285 |
|
split: test |
|
type: facebook/mlqa |
|
metrics: |
|
- type: main_score |
|
value: 56.032000000000004 |
|
- type: map_at_1 |
|
value: 45.218 |
|
- type: map_at_10 |
|
value: 52.32599999999999 |
|
- type: map_at_100 |
|
value: 53.001 |
|
- type: map_at_1000 |
|
value: 53.047999999999995 |
|
- type: ndcg_at_1 |
|
value: 45.228 |
|
- type: ndcg_at_10 |
|
value: 56.032000000000004 |
|
- type: ndcg_at_100 |
|
value: 59.486000000000004 |
|
- type: ndcg_at_1000 |
|
value: 60.938 |
|
- type: ndcg_at_20 |
|
value: 57.507 |
|
- type: ndcg_at_3 |
|
value: 52.05800000000001 |
|
- type: ndcg_at_5 |
|
value: 54.005 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: ara-ara |
|
name: MTEB MLQARetrieval (ara-ara) |
|
revision: 397ed406c1a7902140303e7faf60fff35b58d285 |
|
split: validation |
|
type: facebook/mlqa |
|
metrics: |
|
- type: main_score |
|
value: 71.11 |
|
- type: map_at_1 |
|
value: 58.221000000000004 |
|
- type: map_at_10 |
|
value: 67.089 |
|
- type: map_at_100 |
|
value: 67.62700000000001 |
|
- type: map_at_1000 |
|
value: 67.648 |
|
- type: ndcg_at_1 |
|
value: 58.221000000000004 |
|
- type: ndcg_at_10 |
|
value: 71.11 |
|
- type: ndcg_at_100 |
|
value: 73.824 |
|
- type: ndcg_at_1000 |
|
value: 74.292 |
|
- type: ndcg_at_20 |
|
value: 72.381 |
|
- type: ndcg_at_3 |
|
value: 67.472 |
|
- type: ndcg_at_5 |
|
value: 69.803 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: ar |
|
name: MTEB MintakaRetrieval (ar) |
|
revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e |
|
split: test |
|
type: jinaai/mintakaqa |
|
metrics: |
|
- type: main_score |
|
value: 22.778000000000002 |
|
- type: map_at_1 |
|
value: 13.345 |
|
- type: map_at_10 |
|
value: 19.336000000000002 |
|
- type: map_at_100 |
|
value: 20.116999999999997 |
|
- type: map_at_1000 |
|
value: 20.246 |
|
- type: ndcg_at_1 |
|
value: 13.345 |
|
- type: ndcg_at_10 |
|
value: 22.778000000000002 |
|
- type: ndcg_at_100 |
|
value: 26.997 |
|
- type: ndcg_at_1000 |
|
value: 31.564999999999998 |
|
- type: ndcg_at_20 |
|
value: 24.368000000000002 |
|
- type: ndcg_at_3 |
|
value: 18.622 |
|
- type: ndcg_at_5 |
|
value: 20.72 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: arabic |
|
name: MTEB MrTidyRetrieval (arabic) |
|
revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7 |
|
split: test |
|
type: mteb/mrtidy |
|
metrics: |
|
- type: main_score |
|
value: 55.584999999999994 |
|
- type: map_at_1 |
|
value: 34.197 |
|
- type: map_at_10 |
|
value: 48.658 |
|
- type: map_at_100 |
|
value: 49.491 |
|
- type: map_at_1000 |
|
value: 49.518 |
|
- type: ndcg_at_1 |
|
value: 36.91 |
|
- type: ndcg_at_10 |
|
value: 55.584999999999994 |
|
- type: ndcg_at_100 |
|
value: 59.082 |
|
- type: ndcg_at_1000 |
|
value: 59.711000000000006 |
|
- type: ndcg_at_20 |
|
value: 57.537000000000006 |
|
- type: ndcg_at_3 |
|
value: 48.732 |
|
- type: ndcg_at_5 |
|
value: 52.834 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB SadeemQuestionRetrieval (default) |
|
revision: 3cb0752b182e5d5d740df547748b06663c8e0bd9 |
|
split: test |
|
type: sadeem-ai/sadeem-ar-eval-retrieval-questions |
|
metrics: |
|
- type: main_score |
|
value: 67.916 |
|
- type: map_at_1 |
|
value: 31.785999999999998 |
|
- type: map_at_10 |
|
value: 58.18600000000001 |
|
- type: map_at_100 |
|
value: 58.287 |
|
- type: map_at_1000 |
|
value: 58.29 |
|
- type: ndcg_at_1 |
|
value: 31.785999999999998 |
|
- type: ndcg_at_10 |
|
value: 67.916 |
|
- type: ndcg_at_100 |
|
value: 68.44200000000001 |
|
- type: ndcg_at_1000 |
|
value: 68.53399999999999 |
|
- type: ndcg_at_20 |
|
value: 68.11 |
|
- type: ndcg_at_3 |
|
value: 66.583 |
|
- type: ndcg_at_5 |
|
value: 67.5 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: ara-ara |
|
name: MTEB XPQARetrieval (ara-ara) |
|
revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f |
|
split: test |
|
type: jinaai/xpqa |
|
metrics: |
|
- type: main_score |
|
value: 43.622 |
|
- type: map_at_1 |
|
value: 19.236 |
|
- type: map_at_10 |
|
value: 37.047000000000004 |
|
- type: map_at_100 |
|
value: 38.948 |
|
- type: map_at_1000 |
|
value: 39.054 |
|
- type: ndcg_at_1 |
|
value: 35.333 |
|
- type: ndcg_at_10 |
|
value: 43.622 |
|
- type: ndcg_at_100 |
|
value: 50.761 |
|
- type: ndcg_at_1000 |
|
value: 52.932 |
|
- type: ndcg_at_20 |
|
value: 46.686 |
|
- type: ndcg_at_3 |
|
value: 37.482 |
|
- type: ndcg_at_5 |
|
value: 39.635999999999996 |
|
task: |
|
type: Retrieval |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- loss:MultipleNegativesRankingLoss |
|
- retrieval |
|
- mteb |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
license: apache-2.0 |
|
--- |
|
|
|
|
|
### 🚀 Arabic-Retrieval-v1.0 |
|
|
|
This is a high-performance Arabic information retrieval built using the robust **sentence-transformers** framework, it delivers **state-of-the-art performance** and is tailored to the richness and complexity of the Arabic language. |
|
|
|
|
|
## 🔑 Key Features |
|
- **🔥 Outstanding Performance**: Matches the accuracy of top-tier multilingual models like `e5-multilingual-large`. See [evaluation](https://huggingface.co/omarelshehy/Arabic-retrieval-v1.0#evaluation) |
|
- **💡 Arabic-Focused**: Designed specifically for the nuances and dialects of Arabic, ensuring more accurate and context-aware results. |
|
- **📉 Lightweight Efficiency**: Requires **25%-50% less memory**, making it ideal for environments with limited resources or edge deployments. |
|
|
|
|
|
## 🌍 Why This Model? |
|
Multilingual models are powerful, but they’re often bulky and not optimized for specific languages. This model bridges that gap, offering Arabic-native capabilities without sacrificing performance or efficiency. Whether you’re working on search engines, chatbots, or large-scale NLP pipelines, this model provides a **fast, accurate, and resource-efficient solution**. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
|
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
It is important to add the prefixes \<query\>: and \<passage\>: to your queries and passages while retrieving in the folllowing way: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("omarelshehy/Arabic-Retrieval-v1.0") |
|
|
|
# Query |
|
query = "<query>: كيف يمكن للذكاء الاصطناعي تحسين طرق التدريس التقليدية؟" |
|
|
|
# Passages |
|
passages = [ |
|
"<passage>: طرق التدريس التقليدية تستفيد من الذكاء الاصطناعي عبر تحسين عملية المتابعة وتخصيص التجربة التعليمية. يقوم الذكاء الاصطناعي بتحليل بيانات الطلاب وتقديم توصيات فعالة للمعلمين حول طرق التدريس الأفضل.", |
|
"<passage>: تطوير التعليم الشخصي يعتمد بشكل كبير على الذكاء الاصطناعي، الذي يقوم بمتابعة تقدم الطلاب بشكل فردي. يقدم الذكاء الاصطناعي حلولاً تعليمية مخصصة لكل طالب بناءً على مستواه وأدائه.", |
|
"<passage>: الدقة في تقييم الطلاب تتزايد بفضل الذكاء الاصطناعي الذي يقارن النتائج مع معايير متقدمة. بالرغم من التحديات التقليدية، الذكاء الاصطناعي يوفر أدوات تحليل تتيح تقييماً أدق لأداء الطلاب." |
|
] |
|
|
|
# Encode query and passages |
|
embeddings_query = model.encode(queries) |
|
embeddings_passages = model.encode(passages) |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings_query, embeddings_passages) |
|
|
|
# Get best matching passage to query |
|
best_match = passages[similarities.argmax().item()] |
|
print(f"Best matching passage is {best_match}") |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
This model has been ealuated using 3 different datasets and the NDCG@10 metric |
|
- Dataset 1: [castorini/mr-tydi](https://huggingface.co/datasets/castorini/mr-tydi) |
|
- Dataset 2: [Omartificial-Intelligence-Space/Arabic-finanical-rag-embedding-dataset](https://huggingface.co/datasets/Omartificial-Intelligence-Space/Arabic-finanical-rag-embedding-dataset) |
|
- Dataset 3: [sadeem-ai/sadeem-ar-eval-retrieval-questions](https://huggingface.co/datasets/sadeem-ai/sadeem-ar-eval-retrieval-questions) |
|
and is compared to other highly performant models: |
|
|
|
| **model** | **1** | **2** | **3** | |
|
|-------------------------------------|-----------|--------------|-------------| |
|
| Arabic-Retrieval-v1.0 | 0.875 | **0.72** | 0.679 | |
|
| intfloat/multilingual-e5-large | **0.89** | 0.719 | **0.698** | |
|
| intfloat/multilingual-e5-base | 0.87 | 0.69 | 0.686 | |
|
|
|
|
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
## Citation |
|
|
|
### BibTeX |
|
|
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |