onizukal's picture
End of training
48c2c01 verified
|
raw
history blame
3.04 kB
metadata
license: apache-2.0
base_model: microsoft/swin-large-patch4-window7-224-in22k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: Boya2_SGD_1e3_20Epoch_Swin-large-224_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4703308722996992

Boya2_SGD_1e3_20Epoch_Swin-large-224_fold3

This model is a fine-tuned version of microsoft/swin-large-patch4-window7-224-in22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7253
  • Accuracy: 0.4703

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.4987 1.0 913 2.4779 0.2773
2.2499 2.0 1826 2.3076 0.2986
2.1231 3.0 2739 2.2022 0.3325
2.1706 4.0 3652 2.1236 0.3672
2.0969 5.0 4565 2.0581 0.3940
1.9524 6.0 5478 2.0029 0.4085
1.9868 7.0 6391 1.9548 0.4208
1.9729 8.0 7304 1.9129 0.4293
1.9817 9.0 8217 1.8827 0.4331
1.9117 10.0 9130 1.8505 0.4430
1.8805 11.0 10043 1.8244 0.4482
1.8198 12.0 10956 1.8053 0.4528
1.7002 13.0 11869 1.7829 0.4558
1.811 14.0 12782 1.7721 0.4602
1.8637 15.0 13695 1.7553 0.4602
1.8566 16.0 14608 1.7454 0.4654
1.742 17.0 15521 1.7350 0.4665
1.692 18.0 16434 1.7303 0.4695
1.8241 19.0 17347 1.7261 0.4695
1.8203 20.0 18260 1.7253 0.4703

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.13.2