Model Card for OpenCSG-R1-Qwen2.5-Code-3B-V1
This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-3B-Instruct] (https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct) on the [open-r1/OpenThoughts-114k-Code_decontaminated] datasets. It has been trained using TRL.
Quick start
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import pandas as pd
model_name = "/data/project/pj/r1/opencsg-r1/open-r1/train/Qwen2.5-3B-Open-R1-Code-GRPO/checkpoint-150"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=False)
df = pd.read_parquet('/data/project/pj/r1/opencsg-r1/OpenThoughts-114k-Code_decontaminated/train-00000-of-00006.parquet')
data = df['problem'][0]
messages = [
{
"role": "user",
"content": f"Please help me solve the problem: {data}.Output the thinking process within the <think> </think> tags,and then return the final result within the <answer> </answer> tags.",
},
{
"role": "assistant",
"content": "Let's solve the problem step by step.\n<think>",
},
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
continue_final_message=True,
# add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=1024,
temperature=0.6
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
This model was trained with GRPO, a method introduced in DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models.
Framework versions
- TRL: 0.15.2
- Transformers: 4.49.0
- Pytorch: 2.5.1
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citations
Cite GRPO as:
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
Cite TRL as:
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.