Hugging Face H4

Enterprise
company
Activity Feed

AI & ML interests

Aligning LLMs to be helpful, honest, harmless, and huggy (H4)

Recent Activity

HuggingFaceH4's activity

thomwolf 
posted an update 2 days ago
view post
Post
1987
We've kept pushing our Open-R1 project, an open initiative to replicate and extend the techniques behind DeepSeek-R1.

And even we were mind-blown by the results we got with this latest model we're releasing: ⚡️OlympicCoder ( open-r1/OlympicCoder-7B and open-r1/OlympicCoder-32B)

It's beating Claude 3.7 on (competitive) programming –a domain Anthropic has been historically really strong at– and it's getting close to o1-mini/R1 on olympiad level coding with just 7B parameters!

And the best part is that we're open-sourcing all about its training dataset, the new IOI benchmark, and more in our Open-R1 progress report #3: https://huggingface.co/blog/open-r1/update-3

Datasets are are releasing:
- open-r1/codeforces
- open-r1/codeforces-cots
- open-r1/ioi
- open-r1/ioi-test-cases
- open-r1/ioi-sample-solutions
- open-r1/ioi-cots
- open-r1/ioi-2024-model-solutions
eliebak 
posted an update 2 days ago
view post
Post
1343
Google just dropped an exciting technical report for the brand-new Gemma3 model! 🚀 Here are my personal notes highlighting the most intriguing architectural innovations, design choices, and insights from this release:

1) Architecture choices:
> No more softcaping, replace by QK-Norm
> Both Pre AND Post Norm
> Wider MLP than Qwen2.5, ~ same depth
> SWA with 5:1 and 1024 (very small and cool ablation on the paper!)
> No MLA to save KV cache, SWA do the job!

2) Long context
> Only increase the rope in the global layer (to 1M)
> Confirmation that it's harder to do long context for smol models, no 128k for the 1B
> Pretrained with 32k context? seems very high
> No yarn nor llama3 like rope extension

3) Distillation
> Only keep te first 256 logits for the teacher
> Ablation on the teacher gap (tl;dr you need some "patience" to see that using a small teacher is better)
> On policy distillation yeahh (by
@agarwl_
et al), not sure if the teacher gap behave the same here, curious if someone have more info?

4) Others
> Checkpoint with QAT, that's very cool
> RL using improve version of BOND, WARM/WARP good excuse to look at
@ramealexandre
papers
> Only use Zero3, no TP/PP if i understand correctly ?
> Training budget relatively similar than gemma2
  • 1 reply
·
clefourrier 
posted an update 2 days ago
view post
Post
1528
Gemma3 family is out! Reading the tech report, and this section was really interesting to me from a methods/scientific fairness pov.

Instead of doing over-hyped comparisons, they clearly state that **results are reported in a setup which is advantageous to their models**.
(Which everybody does, but people usually don't say)

For a tech report, it makes a lot of sense to report model performance when used optimally!
On leaderboards on the other hand, comparison will be apples to apples, but in a potentially unoptimal way for a given model family (like some user interact sub-optimally with models)

Also contains a cool section (6) on training data memorization rate too! Important to see if your model will output the training data it has seen as such: always an issue for privacy/copyright/... but also very much for evaluation!

Because if your model knows its evals by heart, you're not testing for generalization.
freddyaboulton 
posted an update 3 days ago
view post
Post
1655
Privacy matters when talking to AI! 🔇

We've just added a microphone mute button to FastRTC in our latest update (v0.0.14). Now you control exactly what your LLM hears.

Plus lots more features in this release! Check them out:
https://github.com/freddyaboulton/fastrtc/releases/tag/0.0.14
lewtun 
posted an update 3 days ago
view post
Post
1830
Introducing OlympicCoder: a series of open reasoning models that can solve olympiad-level programming problems 🧑‍💻

- 7B open-r1/OlympicCoder-7B
- 32B open-r1/OlympicCoder-32B

We find that OlympicCoder models outperform Claude 3.7 Sonnet, as well as others over 100x larger 💪

Together with the models, we are releasing:

📊CodeForces-CoTs: new dataset of code problems from the most popular competitive coding platform, with R1 traces in C++ and Python open-r1/codeforces-cots

🏆 IOI'2024: a new benchmark of VERY hard programming problems where even frontier models struggle to match human performance open-r1/ioi

For links to the models and datasets, check out our latest progress report from Open R1: https://huggingface.co/blog/open-r1/update-3
  • 1 reply
·
albertvillanova 
posted an update 7 days ago
view post
Post
3530
🚀 New smolagents update: Safer Local Python Execution! 🦾🐍

With the latest release, we've added security checks to the local Python interpreter: every evaluation is now analyzed for dangerous builtins, modules, and functions. 🔒

Here's why this matters & what you need to know! 🧵👇

1️⃣ Why is local execution risky? ⚠️
AI agents that run arbitrary Python code can unintentionally (or maliciously) access system files, run unsafe commands, or exfiltrate data.

2️⃣ New Safety Layer in smolagents 🛡️
We now inspect every return value during execution:
✅ Allowed: Safe built-in types (e.g., numbers, strings, lists)
⛔ Blocked: Dangerous functions/modules (e.g., os.system, subprocess, exec, shutil)

3️⃣ Immediate Benefits 💡
- Prevent agents from accessing unsafe builtins
- Block unauthorized file or network access
- Reduce accidental security vulnerabilities

4️⃣ Security Disclaimer ⚠️
🚨 Despite these improvements, local Python execution is NEVER 100% safe. 🚨
If you need true isolation, use a remote sandboxed executor like Docker or E2B.

5️⃣ The Best Practice: Use Sandboxed Execution 🔐
For production-grade AI agents, we strongly recommend running code in a Docker or E2B sandbox to ensure complete isolation.

6️⃣ Upgrade Now & Stay Safe! 🚀
Check out the latest smolagents release and start building safer AI agents today.

🔗 https://github.com/huggingface/smolagents

What security measures do you take when running AI-generated code? Let’s discuss! 👇

#AI #smolagents #Python #Security
  • 2 replies
·
mcpotato 
posted an update 8 days ago
view post
Post
2383
Stoked to announce we've partnered with JFrog to continue improving safety on the Hub! 🐸

Their model scanner brings new scanning capabilities to the table, aimed at reducing alert fatigue.

More on that in our blog post: https://huggingface.co/blog/jfrog
  • 1 reply
·
albertvillanova 
posted an update 8 days ago
view post
Post
3775
🚀 Big news for AI agents! With the latest release of smolagents, you can now securely execute Python code in sandboxed Docker or E2B environments. 🦾🔒

Here's why this is a game-changer for agent-based systems: 🧵👇

1️⃣ Security First 🔐
Running AI agents in unrestricted Python environments is risky! With sandboxing, your agents are isolated, preventing unintended file access, network abuse, or system modifications.

2️⃣ Deterministic & Reproducible Runs 📦
By running agents in containerized environments, you ensure that every execution happens in a controlled and predictable setting—no more environment mismatches or dependency issues!

3️⃣ Resource Control & Limits 🚦
Docker and E2B allow you to enforce CPU, memory, and execution time limits, so rogue or inefficient agents don’t spiral out of control.

4️⃣ Safer Code Execution in Production 🏭
Deploy AI agents confidently, knowing that any generated code runs in an ephemeral, isolated environment, protecting your host machine and infrastructure.

5️⃣ Easy to Integrate 🛠️
With smolagents, you can simply configure your agent to use Docker or E2B as its execution backend—no need for complex security setups!

6️⃣ Perfect for Autonomous AI Agents 🤖
If your AI agents generate and execute code dynamically, this is a must-have to avoid security pitfalls while enabling advanced automation.

⚡ Get started now: https://github.com/huggingface/smolagents

What will you build with smolagents? Let us know! 🚀💡
andito 
posted an update 9 days ago
view post
Post
2430
Extremely bullish on @CohereForAI 's Aya Vision (8B & 32B) - new SOTA open-weight VLMs

- 8B wins up to 81% of the time in its class, better than Gemini Flash
- 32B beats Llama 3.2 90B!
- Covers 23 languages, excels in image captioning, VQA & more
- Integrated on transformers from Day 0!

Efficient multimodal models are here to stay!!🔥
Check out their blog! https://huggingface.co/blog/aya-vision
alvarobartt 
posted an update 17 days ago
view post
Post
2843
🔥 Agents can do anything! @microsoft Research just announced the release of Magma 8B!

Magma is a new Visual Language Model (VLM) with 8B parameters for multi-modal agents designed to handle complex interactions across virtual and real environments; and it's MIT licensed!

Magma comes with exciting new features such as:
- Introduces the Set-of-Mark and Trace-of-Mark techniques for fine-tuning
- Leverages a large amount of unlabeled video data to learn the spatial-temporal grounding and planning
- A strong generalization and ability to be fine-tuned for other agentic tasks
- SOTA in different multi-modal benchmarks spanning across UI navigation, robotics manipulation, image / video understanding and spatial understanding and reasoning
- Generates goal-driven visual plans and actions for agentic use cases

Model: microsoft/Magma-8B
Technical Report: Magma: A Foundation Model for Multimodal AI Agents (2502.13130)
freddyaboulton 
posted an update 17 days ago
view post
Post
3158
Getting WebRTC and Websockets right in python is very tricky. If you've tried to wrap an LLM in a real-time audio layer then you know what I'm talking about.

That's where FastRTC comes in! It makes WebRTC and Websocket streams super easy with minimal code and overhead.

Check out our org: hf.co/fastrtc
lysandre 
posted an update 21 days ago
view post
Post
5618
SmolVLM-2 and SigLIP-2 are now part of transformers in dedicated releases!

They're added on top of the v4.49.0 release, and can be installed from the following tags: v4.49.0-SmolVLM-2 and v4.49.0-SigLIP-2.

This marks a new beginning for the release process of transformers. For the past five years, we've been doing monthly releases featuring many models (v4.49.0, the latest release, features 9 new architectures).

Starting with SmolVLM-2 & SigLIP2, we'll now additionally release tags supporting new models on a stable branch. These models are therefore directly available for use by installing from the tag itself. These tags will continue to be updated with fixes applied to these models.

Going forward, continue expecting software releases following semantic versioning: v4.50.0 will have ~10 new architectures compared to v4.49.0, as well as a myriad of new features, improvements and bug fixes. Accompanying these software releases, we'll release tags offering brand new models as fast as possible, to make them accessible to all immediately.
  • 1 reply
·
merve 
posted an update 23 days ago
view post
Post
5921
Google just released PaliGemma 2 Mix: new versatile instruction vision language models 🔥

> Three new models: 3B, 10B, 28B with res 224, 448 💙
> Can do vision language tasks with open-ended prompts, understand documents, and segment or detect anything 🤯

Read more https://huggingface.co/blog/paligemma2mix
Try the demo google/paligemma2-10b-mix
All models are here google/paligemma-2-mix-67ac6a251aaf3ee73679dcc4
merve 
posted an update 28 days ago
view post
Post
4724
Your weekly recap of open AI is here, and it's packed with models! merve/feb-14-releases-67af876b404cc27c6d837767

👀 Multimodal
> OpenGVLab released InternVideo 2.5 Chat models, new video LMs with long context
> AIDC released Ovis2 model family along with Ovis dataset, new vision LMs in different sizes (1B, 2B, 4B, 8B, 16B, 34B), with video and OCR support
> ColQwenStella-2b is a multilingual visual retrieval model that is sota in it's size
> Hoags-2B-Exp is a new multilingual vision LM with contextual reasoning, long context video understanding

💬 LLMs
A lot of math models!
> Open-R1 team released OpenR1-Math-220k large scale math reasoning dataset, along with Qwen2.5-220K-Math fine-tuned on the dataset, OpenR1-Qwen-7B
> Nomic AI released new Nomic Embed multilingual retrieval model, a MoE with 500 params with 305M active params, outperforming other models
> DeepScaleR-1.5B-Preview is a new DeepSeek-R1-Distill fine-tune using distributed RL on math
> LIMO is a new fine-tune of Qwen2.5-32B-Instruct on Math

🗣️ Audio
> Zonos-v0.1 is a new family of speech recognition models, which contains the model itself and embeddings

🖼️ Vision and Image Generation
> We have ported DepthPro of Apple to transformers for your convenience!
> illustrious-xl-v1.0 is a new illustration generation model
·
regisss 
posted an update 28 days ago
view post
Post
1653
Nice paper comparing the fp8 inference efficiency of Nvidia H100 and Intel Gaudi2: An Investigation of FP8 Across Accelerators for LLM Inference (2502.01070)

The conclusion is interesting: "Our findings highlight that the Gaudi 2, by leveraging FP8, achieves higher throughput-to-power efficiency during LLM inference"

One aspect of AI hardware accelerators that is often overlooked is how they consume less energy than GPUs. It's nice to see researchers starting carrying out experiments to measure this!

Gaudi3 results soon...
lewtun 
posted an update about 1 month ago
view post
Post
4879
Introducing OpenR1-Math-220k!

open-r1/OpenR1-Math-220k

The community has been busy distilling DeepSeek-R1 from inference providers, but we decided to have a go at doing it ourselves from scratch 💪

What’s new compared to existing reasoning datasets?

♾ Based on AI-MO/NuminaMath-1.5: we focus on math reasoning traces and generate answers for problems in NuminaMath 1.5, an improved version of the popular NuminaMath-CoT dataset.

🐳 800k R1 reasoning traces: We generate two answers for 400k problems using DeepSeek R1. The filtered dataset contains 220k problems with correct reasoning traces.

📀 512 H100s running locally: Instead of relying on an API, we leverage vLLM and SGLang to run generations locally on our science cluster, generating 180k reasoning traces per day.

⏳ Automated filtering: We apply Math Verify to only retain problems with at least one correct answer. We also leverage Llama3.3-70B-Instruct as a judge to retrieve more correct examples (e.g for cases with malformed answers that can’t be verified with a rules-based parser)

📊 We match the performance of DeepSeek-Distill-Qwen-7B by finetuning Qwen-7B-Math-Instruct on our dataset.

🔎 Read our blog post for all the nitty gritty details: https://huggingface.co/blog/open-r1/update-2
merve 
posted an update about 1 month ago
view post
Post
3112
Interesting releases in open AI this week, let's recap 🤠 merve/feb-7-releases-67a5f7d7f172d8bfe0dd66f4

🤖 Robotics
> Pi0, first open-source foundation vision-language action model was released in Le Robot (Apache 2.0)

💬 LLMs
> Groundbreaking: s1 is simpler approach to test-time scaling, the release comes with small s1K dataset of 1k question-reasoning trace pairs (from Gemini-Thinking Exp) they fine-tune Qwen2.5-32B-Instruct to get s1-32B, outperforming o1-preview on math 🤯 s1-32B and s1K is out!
> Adyen released DABstep, a new benchmark along with it's leaderboard demo for agents doing data analysis
> Krutrim released Krutrim-2 instruct, new 12B model based on NeMo12B trained and aligned on Indic languages, a new multilingual sentence embedding model (based on STSB-XLM-R), and a translation model for Indic languages

👀 Multimodal
> PKU released Align-DS-V, a model aligned using their new technique called LLF for all modalities (image-text-audio), along with the dataset Align Anything
> OLA-7B is a new any-to-any model by Tencent that can take text, image, video, audio data with context window of 32k tokens and output text and speech in English and Chinese
> Krutrim released Chitrarth, a new vision language model for Indic languages and English

🖼️ Vision
> BiRefNet_HR is a new higher resolution BiRefNet for background removal

🗣️ Audio
> kyutai released Hibiki, it's a real-time speech-to-speech translation model 🤯 it's available for French-English translation
> Krutrim released Dhwani, a new STT model for Indic languages
> They also release a new dataset for STT-TTS

🖼️ Image Generation
> Lumina released Lumina-Image-2.0, a 2B parameter-flow based DiT for text to image generation
> Tencent released Hunyuan3D-2, a 3D asset generation model based on DiT and Hunyuan3D-Paint
> boreal-hl-v1 is a new boring photorealistic image generation LoRA based on Hunyuan