Introducing ππ π’π§πππππ‘: the best public math pre-training dataset with 50B+ tokens! HuggingFaceTB/finemath
Math remains challenging for LLMs and by training on FineMath we see considerable gains over other math datasets, especially on GSM8K and MATH.
We build the dataset by: π οΈ carefully extracting math data from Common Crawl; π iteratively filtering and recalling high quality math pages using a classifier trained on synthetic annotations to identify math reasoning and deduction.
We conducted a series of ablations comparing the performance of Llama-3.2-3B-Base after continued pre-training on FineMath and observe notable gains compared to the baseline model and other public math datasets.
We hope this helps advance the performance of LLMs on math and reasoning! π Weβre also releasing all the ablation models as well as the evaluation code.
We outperform Llama 70B with Llama 3B on hard math by scaling test-time compute π₯
How? By combining step-wise reward models with tree search algorithms :)
We show that smol models can match or exceed the performance of their much larger siblings when given enough "time to think"
We're open sourcing the full recipe and sharing a detailed blog post.
In our blog post we cover:
π Compute-optimal scaling: How we implemented DeepMind's recipe to boost the mathematical capabilities of open models at test-time.
π Diverse Verifier Tree Search (DVTS): An unpublished extension we developed to the verifier-guided tree search technique. This simple yet effective method improves diversity and delivers better performance, particularly at large test-time compute budgets.
π§ Search and Learn: A lightweight toolkit for implementing search strategies with LLMs and built for speed with vLLM
πͺπΊ Policy Thoughts in the EU AI Act Implementation πͺπΊ
There is a lot to like in the first draft of the EU GPAI Code of Practice, especially as regards transparency requirements. The Systemic Risks part, on the other hand, is concerning for both smaller developers and for external stakeholders.
I wrote more on this topic ahead of the next draft. TLDR: more attention to immediate large-scale risks and to collaborative solutions supported by evidence can help everyone - as long as developers disclose sufficient information about their design choices and deployment contexts.
We applied the same data-driven approach that led to SOTA English performance inπ· FineWeb to thousands of languages.
π₯ FineWeb2 has 8TB of compressed text data and outperforms other multilingual datasets in our experiments.
The dataset is released under the permissive π ODC-By 1.0 license, and the π» code to reproduce it and our evaluations is public.
We will very soon announce a big community project, and are working on a π blogpost walking you through the entire dataset creation process. Stay tuned!
- Pre-training code with nanotron - Evaluation suite with lighteval - Synthetic data generation using distilabel (powers our new SFT dataset HuggingFaceTB/smoltalk) - Post-training scripts with TRL & the alignment handbook - On-device tools with llama.cpp for summarization, rewriting & agents
Apache 2.0 licensed. V2 pre-training data mix coming soon!
How do I test an LLM for my unique needs? If you work in finance, law, or medicine, generic benchmarks are not enough. This blog post uses Argilla, Distilllabel and π€οΈLighteval to generate evaluation dataset and evaluate models.
π· FineWeb technical report is out and so is π FineWeb-Edu, a 1.3 trillion tokens dataset that outperforms all other open web datasets, with remarkable improvements on educational benchmarksΒ such as MMLU, ARC, and OpenBookQA.
We used Llama 3 generations to train an educational quality classifier, filtering the 15 trillion tokens of FineWeb to select only those with high educational value (an approach also used in Llama 3 and Phi-3 training datasets). We're releasing both FineWeb-Edu and the classifier, along with a larger, less heavily filtered version containing 5.4 trillion tokens.
You can find more details about the dataset and the experiments we ran in the FineWeb technical report, It's a 45-minute read but it contains all the secret sauce for building high quality web datasets.
[New crazy blog post alert] We are releasing an extensive blog post on the science of creating high quality web-scale datasets, detailing all the steps and learnings that came in our recent 15 trillion tokens π·FineWeb release
Inspired by the distill.pub interactive graphics papers, we settled to write the most extensive, enjoyable and in-depth tech report we could draft on so prepare for a 45-mmin read with interactive graphics and all.
And it's not all, in this article we also introduce πFineWeb-Edu a filtered subset of Common Crawl with 1.3T tokens containing only web pages with very high educational content. Up to our knowledge, FineWeb-Edu out-performs all openly release web-scale datasets by a significant margin on knowledge- and reasoning-intensive benchmarks like MMLU, ARC, and OpenBookQA
We also make a number of surprising observations on the "quality" of the internet it-self which may challenge some of the general assumptions on web data (not saying more, I'll let you draw your conclusions ;)