Nerdy Face

Enterprise
company

AI & ML interests

None defined yet.

Recent Activity

nerdyface's activity

m-ricย 
posted an update about 20 hours ago
view post
Post
1494
We now have a Deep Research for academia: SurveyX automatically writes academic surveys nearly indistinguishable from human-written ones ๐Ÿ”ฅ

Researchers from Beijing and Shanghai just published the first application of a deep research system to academia: their algorithm, given a question, can give you a survey of all papers on the subject.

To make a research survey, you generally follow two steps, preparation (collect and organize papers) and writing (outline creation, writing, polishing). Researchers followed the same two steps and automated them.

๐ŸŽฏ For the preparation part, a key part is find all the important references on the given subject.
Researchers first cast a wide net of all relevant papers. But then finding the really important ones is like distilling knowledge from a haystack of information. To solve this challenge, they built an โ€œAttributeTreeโ€ object that structures key information from citations. Ablating these AttributeTrees significantly decreased structure and synthesis scores, so they were really useful!

๐Ÿ“ For the writing part, key was to get a synthesis that's both short and true. This is not easy to get with LLMs! So they used methods like LLM-based deduplication to shorten the too verbose listings made by LLMs, and RAG to grab original quotes instead of made-up ones.

As a result, their system outperforms previous approaches by far!

As assessed by LLM-judges, the quality score os SurveyX even approaches this of human experts, with 4.59/5 vs 4.75/5 ๐Ÿ†

I advise you to read the paper, it's a great overview of the kind of assistants that we'll get in the short future! ๐Ÿ‘‰ SurveyX: Academic Survey Automation via Large Language Models (2502.14776)
Their website shows examples of generated surveys ๐Ÿ‘‰ http://www.surveyx.cn/
prithivMLmodsย 
posted an update 3 days ago
view post
Post
5412
It's really interesting about the deployment of a new state of matter in Majorana 1: the worldโ€™s first quantum processor powered by topological qubits. If you missed this news this week, here are some links for you:

๐Ÿ…ฑ๏ธTopological qubit arrays: https://arxiv.org/pdf/2502.12252

โš›๏ธ Quantum Blog: https://azure.microsoft.com/en-us/blog/quantum/2025/02/19/microsoft-unveils-majorana-1-the-worlds-first-quantum-processor-powered-by-topological-qubits/

๐Ÿ“– Read the story: https://news.microsoft.com/source/features/innovation/microsofts-majorana-1-chip-carves-new-path-for-quantum-computing/

๐Ÿ“ Majorana 1 Intro: https://youtu.be/Q4xCR20Dh1E?si=Z51DbEYnZFp_88Xp

๐ŸŒ€The Path to a Million Qubits: https://youtu.be/wSHmygPQukQ?si=TS80EhI62oWiMSHK
ยท
prithivMLmodsย 
posted an update 7 days ago
view post
Post
3867
Dino: The Minimalist Multipurpose Chat System ๐ŸŒ 
Agent-Dino : prithivMLmods/Agent-Dino
Github: https://github.com/PRITHIVSAKTHIUR/Agent-Dino

By default, it performs the following tasks:
{Text-to-Text Generation}, {Image-Text-Text Generation}
@image: Generates an image using Stable Diffusion xL.
@3d: Generates a 3D mesh.
@web: Web search agents.
@rAgent: Initiates a reasoning chain using Llama mode for coding explanations.
@tts1-โ™€, @tts2-โ™‚: Voice generation (Female and Male voices).
@yolo : Object Detection
m-ricย 
posted an update 7 days ago
view post
Post
2772
Less is More for Reasoning (LIMO): a 32B model fine-tuned with 817 examples can beat o1-preview on math reasoning! ๐Ÿคฏ

Do we really need o1's huge RL procedure to see reasoning emerge? It seems not.
Researchers from Shanghai Jiaotong University just demonstrated that carefully selected examples can boost math performance in large language models using SFT โ€”no huge datasets or RL procedures needed.

Their procedure allows Qwen2.5-32B-Instruct to jump from 6.5% to 57% on AIME and from 59% to 95% on MATH, while using only 1% of the data in previous approaches.

โšก The Less-is-More Reasoning Hypothesis:
โ€ฃ Minimal but precise examples that showcase optimal reasoning patterns matter more than sheer quantity
โ€ฃ Pre-training knowledge plus sufficient computational resources at inference levels up math skills

โžก๏ธ Core techniques:
โ€ฃ High-quality reasoning chains with self-verification steps
โ€ฃ 817 handpicked problems that encourage deeper reasoning
โ€ฃ Enough inference-time computation to allow extended reasoning

๐Ÿ’ช Efficiency gains:
โ€ฃ Only 817 examples instead of 100k+
โ€ฃ 40.5% absolute improvement across 10 diverse benchmarks, outperforming models trained on 100x more data

This really challenges the notion that SFT leads to memorization rather than generalization! And opens up reasoning to GPU-poor researchers ๐Ÿš€

Read the full paper here ๐Ÿ‘‰ย  LIMO: Less is More for Reasoning (2502.03387)
prithivMLmodsย 
posted an update 9 days ago
view post
Post
4460
The last week of Impression Craft Arts and sketches from strangerzonehf๐ŸŽจ๐Ÿง‘๐Ÿปโ€๐ŸŽจ

- Collection : strangerzonehf/Flux-Ultimate-LoRA-Collection

Adapters:
+ Ld-Art : strangerzonehf/Ld-Art
+ Animeopix-Flux : strangerzonehf/Animeopix-Flux
+ Flux-Super-Paint-LoRA : strangerzonehf/Flux-Super-Paint-LoRA
+ CinematicShot-Pics-Flux : strangerzonehf/cinematicShot-Pics-Flux
+ Oil-Wall-Art-Flux : strangerzonehf/Oil-Wall-Art-Flux
+ Pixelo-Flux : strangerzonehf/Pixelo-Flux
+ Abstract-Shattered : strangerzonehf/Abstract-Shattered
+ Neon-Impressionism-Flux : strangerzonehf/Neon-Impressionism-Flux
+ NewG-Art : strangerzonehf/NewG-Art

๐ŸชงDemo : prithivMLmods/FLUX-LoRA-DLC
๐Ÿค—Page : https://huggingface.co/strangerzonehf
AtAndDevย 
posted an update 10 days ago
view post
Post
2363
@nroggendorff is that you sama?
  • 2 replies
ยท
fffiloniย 
posted an update 10 days ago
m-ricย 
posted an update 11 days ago
view post
Post
2723
๐—š๐—ฟ๐—ฒ๐—ฎ๐˜ ๐—ณ๐—ฒ๐—ฎ๐˜๐˜‚๐—ฟ๐—ฒ ๐—ฎ๐—น๐—ฒ๐—ฟ๐˜: you can now share agents to the Hub! ๐Ÿฅณ๐Ÿฅณ

And any agent pushed to Hub get a cool Space interface to directly chat with it.

This was a real technical challenge: for instance, serializing tools to export them meant that you needed to get all the source code for a tool, verify that it was standalone (not relying on external variables), and gathering all the packages required to make it run.

Go try it out! ๐Ÿ‘‰ https://github.com/huggingface/smolagents
  • 2 replies
ยท
m-ricย 
posted an update 11 days ago
view post
Post
2391
For those who haven't come across it yet, here's a handy trick to discuss an entire GitHub repo with an LLM:

=> Just replace "github" with "gitingest" in the url, and you get the whole repo as a single string that you can then paste in your LLMs
m-ricย 
posted an update 13 days ago
view post
Post
4718
"๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ ๐˜„๐—ถ๐—น๐—น ๐—ฏ๐—ฒ ๐˜๐—ต๐—ฒ ๐˜†๐—ฒ๐—ฎ๐—ฟ ๐—ผ๐—ณ ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€": this statement has often been made, here are numbers to support it.

I've plotted the progress of AI agents on GAIA test set, and it seems they're headed to catch up with the human baseline in early 2026.

And that progress is still driven mostly by the improvement of base LLMs: progress would be even faster with fine-tuned agentic models.
prithivMLmodsย 
posted an update 17 days ago
view post
Post
4242
QwQ Edge Gets a Small Update..! ๐Ÿ’ฌ
try now: prithivMLmods/QwQ-Edge

๐Ÿš€Now, you can use the following commands for different tasks:

๐Ÿ–ผ๏ธ @image 'prompt...' โ†’ Generates an image
๐Ÿ”‰@tts1 'prompt...' โ†’ Generates speech in a female voice
๐Ÿ”‰ @tts2 'prompt...' โ†’ Generates speech in a male voice
๐Ÿ…ฐ๏ธ@text 'prompt...' โ†’ Enables textual conversation (If not specified, text-to-text generation is the default mode)

๐Ÿ’ฌMultimodality Support : prithivMLmods/Qwen2-VL-OCR-2B-Instruct
๐Ÿ’ฌFor text generation, the FastThink-0.5B model ensures quick and efficient responses, prithivMLmods/FastThink-0.5B-Tiny
๐Ÿ’ฌImage Generation: sdxl lightning model, SG161222/RealVisXL_V4.0_Lightning

Github: https://github.com/PRITHIVSAKTHIUR/QwQ-Edge

graph TD
    A[User Interface] --> B[Chat Logic]
    B --> C{Command Type}
    C -->|Text| D[FastThink-0.5B]
    C -->|Image| E[Qwen2-VL-OCR-2B]
    C -->|@image| F[Stable Diffusion XL]
    C -->|@tts| G[Edge TTS]
    D --> H[Response]
    E --> H
    F --> H
    G --> H
eienmojikiย 
posted an update 17 days ago
m-ricย 
posted an update 18 days ago
view post
Post
3662
๐—”๐—ฑ๐˜†๐—ฒ๐—ป'๐˜€ ๐—ป๐—ฒ๐˜„ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐—•๐—ฒ๐—ป๐—ฐ๐—ต๐—บ๐—ฎ๐—ฟ๐—ธ ๐˜€๐—ต๐—ผ๐˜„๐˜€ ๐˜๐—ต๐—ฎ๐˜ ๐——๐—ฒ๐—ฒ๐—ฝ๐—ฆ๐—ฒ๐—ฒ๐—ธ-๐—ฅ๐Ÿญ ๐˜€๐˜๐—ฟ๐˜‚๐—ด๐—ด๐—น๐—ฒ๐˜€ ๐—ผ๐—ป ๐—ฑ๐—ฎ๐˜๐—ฎ ๐˜€๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐˜๐—ฎ๐˜€๐—ธ๐˜€! โŒ

โžก๏ธ How well do reasoning models perform on agentic tasks? Until now, all indicators seemed to show that they worked really well. On our recent reproduction of Deep Search, OpenAI's o1 was by far the best model to power an agentic system.

So when our partner Adyen built a huge benchmark of 450 data science tasks, and built data agents with smolagents to test different models, I expected reasoning models like o1 or DeepSeek-R1 to destroy the tasks at hand.

๐Ÿ‘Ž But they really missed the mark. DeepSeek-R1 only got 1 or 2 out of 10 questions correct. Similarly, o1 was only at ~13% correct answers.

๐Ÿง These results really surprised us. We thoroughly checked them, we even thought our APIs for DeepSeek were broken and colleagues Leandro Anton helped me start custom instances of R1 on our own H100s to make sure it worked well.
But there seemed to be no mistake. Reasoning LLMs actually did not seem that smart. Often, these models made basic mistakes, like forgetting the content of a folder that they had just explored, misspelling file names, or hallucinating data. Even though they do great at exploring webpages through several steps, the same level of multi-step planning seemed much harder to achieve when reasoning over files and data.

It seems like there's still lots of work to do in the Agents x Data space. Congrats to Adyen for this great benchmark, looking forward to see people proposing better agents! ๐Ÿš€

Read more in the blog post ๐Ÿ‘‰ https://huggingface.co/blog/dabstep
m-ricย 
posted an update 21 days ago
view post
Post
9611
Introducing ๐—ผ๐—ฝ๐—ฒ๐—ป ๐——๐—ฒ๐—ฒ๐—ฝ-๐—ฅ๐—ฒ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต by Hugging Face! ๐Ÿ’ฅ

OpenAI's latest agentic app Deep Research seems really good... But it's closed, as usual.

โฑ๏ธ So with a team of cracked colleagues, we set ourselves a 24hours deadline to replicate and open-source Deep Research! โฑ๏ธ

โžก๏ธ We built open-Deep-Research, an entirely open agent that can: navigate the web autonomously, scroll and search through pages, download and manipulate files, run calculation on data...

We aimed for the best performance: are the agent's answers really rigorous?

On GAIA benchmark, Deep Research had 67% accuracy on the validation set.
โžก๏ธ open Deep Research is at 55% (powered by o1), it is:
- the best pass@1 solution submitted
- the best open solution ๐Ÿ’ช๐Ÿ’ช

And it's only getting started ! Please jump in, drop PRs, and let's bring it to the top !

Read the blog post ๐Ÿ‘‰ https://huggingface.co/blog/open-deep-research
Tonicย 
posted an update 22 days ago
view post
Post
2204
๐Ÿ™‹๐Ÿปโ€โ™‚๏ธhey there folks ,

Goedel's Theorem Prover is now being demo'ed on huggingface : Tonic/Math

give it a try !
prithivMLmodsย 
posted an update 23 days ago
view post
Post
4793
o3-Mini and Deepseek R1
Worked out with some famous and weird examples.

๐Ÿ”ฅBlog: https://huggingface.co/blog/prithivMLmods/o3-mini-vs-deepseek-r1

Prompt : Using HTML, CSS, and JavaScript in a single HTML file to create a simulation of the solar system. Pay extreme attention to the UI to make it as intuitive as possible. Ensure that every planet appears as a sphere and is labeled with its corresponding name.

example 1: o3 Mini , example 2: Deepseek R1

Q2 : https://huggingface.co/blog/prithivMLmods/o3-mini-vs-deepseek-r1#q2--web-solar-system-explorer
  • 1 reply
ยท
fffiloniย 
posted an update 25 days ago
view post
Post
3475
Explain like i'm 5 the last take from @thomwolf on X about Dario's essay on DeepSeek:

โ€”โ€บ Open-source AI is like a big cookbook that everyone can read and improve. Instead of a few chefs keeping their recipes secret, anyone can cook, test, and invent new things.

If only one company controls AI, everything stops if they have a problemโ€”like when the internet goes down. With open-source, many people can help, making sure it keeps running smoothly.

AI isnโ€™t just a race between two countries; itโ€™s a team effort around the world. By sharing, we move faster and create safer technology for everyone.
โ€”
๐Ÿค—
m-ricย 
posted an update 25 days ago
view post
Post
3091
Now you can launch a code agent directly from your terminal!
โœจ ๐šœ๐š–๐š˜๐š•๐šŠ๐š๐šŽ๐š—๐š "๐šˆ๐š˜๐šž๐š› ๐š๐šŠ๐šœ๐š”" directly launches a CodeAgent
โ–ถ๏ธ This also works with web agents (replace ๐šœ๐š–๐š˜๐š•๐šŠ๐š๐šŽ๐š—๐š with ๐š ๐šŽ๐š‹๐šŠ๐š๐šŽ๐š—๐š) thanks to @merve !

๐Ÿ’พ Another treat from smolagents release 1.7.0:
Now agents have a memory mechanism, enabling many possibilities like replaying the last run with ๐šŠ๐š๐šŽ๐š—๐š.๐š›๐šŽ๐š™๐š•๐šŠ๐šข(), thank you @clefourrier !

Check the release notes here ๐Ÿ‘‰ https://github.com/huggingface/smolagents/releases/tag/v1.7.0
not-lainย 
posted an update 26 days ago