SIMS

community

AI & ML interests

None defined yet.

Recent Activity

sims-benchmark's activity

thomwolf 
posted an update 1 day ago
view post
Post
1140
We've kept pushing our Open-R1 project, an open initiative to replicate and extend the techniques behind DeepSeek-R1.

And even we were mind-blown by the results we got with this latest model we're releasing: ⚡️OlympicCoder ( open-r1/OlympicCoder-7B and open-r1/OlympicCoder-32B)

It's beating Claude 3.7 on (competitive) programming –a domain Anthropic has been historically really strong at– and it's getting close to o1-mini/R1 on olympiad level coding with just 7B parameters!

And the best part is that we're open-sourcing all about its training dataset, the new IOI benchmark, and more in our Open-R1 progress report #3: https://huggingface.co/blog/open-r1/update-3

Datasets are are releasing:
- open-r1/codeforces
- open-r1/codeforces-cots
- open-r1/ioi
- open-r1/ioi-test-cases
- open-r1/ioi-sample-solutions
- open-r1/ioi-cots
- open-r1/ioi-2024-model-solutions
clefourrier 
posted an update 1 day ago
view post
Post
993
Gemma3 family is out! Reading the tech report, and this section was really interesting to me from a methods/scientific fairness pov.

Instead of doing over-hyped comparisons, they clearly state that **results are reported in a setup which is advantageous to their models**.
(Which everybody does, but people usually don't say)

For a tech report, it makes a lot of sense to report model performance when used optimally!
On leaderboards on the other hand, comparison will be apples to apples, but in a potentially unoptimal way for a given model family (like some user interact sub-optimally with models)

Also contains a cool section (6) on training data memorization rate too! Important to see if your model will output the training data it has seen as such: always an issue for privacy/copyright/... but also very much for evaluation!

Because if your model knows its evals by heart, you're not testing for generalization.
m-ric 
posted an update 3 days ago
view post
Post
767
Our new Agentic leaderboard is now live!💥

If you ever asked which LLM is best for powering agents, we've just made a leaderboard that ranks them all! Built with @albertvillanova , this ranks LLMs powering a smolagents CodeAgent on subsets of various benchmarks. ✅

🏆 GPT-4.5 comes on top, even beating reasoning models like DeepSeek-R1 or o1. And Claude-3.7-Sonnet is a close second!

The leaderboard also allows you to show the scores of vanilla LLMs (without any agentic setup) on the same benchmarks: this shows the huge improvements brought by agentic setups. 💪

(Note that results will be added manually, so the leaderboard might not always have the latest LLMs)
  • 1 reply
·
m-ric 
posted an update 17 days ago
view post
Post
4727
We now have a Deep Research for academia: SurveyX automatically writes academic surveys nearly indistinguishable from human-written ones 🔥

Researchers from Beijing and Shanghai just published the first application of a deep research system to academia: their algorithm, given a question, can give you a survey of all papers on the subject.

To make a research survey, you generally follow two steps, preparation (collect and organize papers) and writing (outline creation, writing, polishing). Researchers followed the same two steps and automated them.

🎯 For the preparation part, a key part is find all the important references on the given subject.
Researchers first cast a wide net of all relevant papers. But then finding the really important ones is like distilling knowledge from a haystack of information. To solve this challenge, they built an “AttributeTree” object that structures key information from citations. Ablating these AttributeTrees significantly decreased structure and synthesis scores, so they were really useful!

📝 For the writing part, key was to get a synthesis that's both short and true. This is not easy to get with LLMs! So they used methods like LLM-based deduplication to shorten the too verbose listings made by LLMs, and RAG to grab original quotes instead of made-up ones.

As a result, their system outperforms previous approaches by far!

As assessed by LLM-judges, the quality score os SurveyX even approaches this of human experts, with 4.59/5 vs 4.75/5 🏆

I advise you to read the paper, it's a great overview of the kind of assistants that we'll get in the short future! 👉 SurveyX: Academic Survey Automation via Large Language Models (2502.14776)
Their website shows examples of generated surveys 👉 http://www.surveyx.cn/
m-ric 
posted an update 23 days ago
view post
Post
3026
Less is More for Reasoning (LIMO): a 32B model fine-tuned with 817 examples can beat o1-preview on math reasoning! 🤯

Do we really need o1's huge RL procedure to see reasoning emerge? It seems not.
Researchers from Shanghai Jiaotong University just demonstrated that carefully selected examples can boost math performance in large language models using SFT —no huge datasets or RL procedures needed.

Their procedure allows Qwen2.5-32B-Instruct to jump from 6.5% to 57% on AIME and from 59% to 95% on MATH, while using only 1% of the data in previous approaches.

⚡ The Less-is-More Reasoning Hypothesis:
‣ Minimal but precise examples that showcase optimal reasoning patterns matter more than sheer quantity
‣ Pre-training knowledge plus sufficient computational resources at inference levels up math skills

➡️ Core techniques:
‣ High-quality reasoning chains with self-verification steps
‣ 817 handpicked problems that encourage deeper reasoning
‣ Enough inference-time computation to allow extended reasoning

💪 Efficiency gains:
‣ Only 817 examples instead of 100k+
‣ 40.5% absolute improvement across 10 diverse benchmarks, outperforming models trained on 100x more data

This really challenges the notion that SFT leads to memorization rather than generalization! And opens up reasoning to GPU-poor researchers 🚀

Read the full paper here 👉  LIMO: Less is More for Reasoning (2502.03387)
m-ric 
posted an update 27 days ago
view post
Post
2903
𝗚𝗿𝗲𝗮𝘁 𝗳𝗲𝗮𝘁𝘂𝗿𝗲 𝗮𝗹𝗲𝗿𝘁: you can now share agents to the Hub! 🥳🥳

And any agent pushed to Hub get a cool Space interface to directly chat with it.

This was a real technical challenge: for instance, serializing tools to export them meant that you needed to get all the source code for a tool, verify that it was standalone (not relying on external variables), and gathering all the packages required to make it run.

Go try it out! 👉 https://github.com/huggingface/smolagents
  • 2 replies
·
m-ric 
posted an update 27 days ago
view post
Post
2514
For those who haven't come across it yet, here's a handy trick to discuss an entire GitHub repo with an LLM:

=> Just replace "github" with "gitingest" in the url, and you get the whole repo as a single string that you can then paste in your LLMs
m-ric 
posted an update 29 days ago
view post
Post
4821
"𝟮𝟬𝟮𝟱 𝘄𝗶𝗹𝗹 𝗯𝗲 𝘁𝗵𝗲 𝘆𝗲𝗮𝗿 𝗼𝗳 𝗔𝗜 𝗮𝗴𝗲𝗻𝘁𝘀": this statement has often been made, here are numbers to support it.

I've plotted the progress of AI agents on GAIA test set, and it seems they're headed to catch up with the human baseline in early 2026.

And that progress is still driven mostly by the improvement of base LLMs: progress would be even faster with fine-tuned agentic models.
m-ric 
posted an update about 1 month ago
view post
Post
3735
𝗔𝗱𝘆𝗲𝗻'𝘀 𝗻𝗲𝘄 𝗗𝗮𝘁𝗮 𝗔𝗴𝗲𝗻𝘁𝘀 𝗕𝗲𝗻𝗰𝗵𝗺𝗮𝗿𝗸 𝘀𝗵𝗼𝘄𝘀 𝘁𝗵𝗮𝘁 𝗗𝗲𝗲𝗽𝗦𝗲𝗲𝗸-𝗥𝟭 𝘀𝘁𝗿𝘂𝗴𝗴𝗹𝗲𝘀 𝗼𝗻 𝗱𝗮𝘁𝗮 𝘀𝗰𝗶𝗲𝗻𝗰𝗲 𝘁𝗮𝘀𝗸𝘀! ❌

➡️ How well do reasoning models perform on agentic tasks? Until now, all indicators seemed to show that they worked really well. On our recent reproduction of Deep Search, OpenAI's o1 was by far the best model to power an agentic system.

So when our partner Adyen built a huge benchmark of 450 data science tasks, and built data agents with smolagents to test different models, I expected reasoning models like o1 or DeepSeek-R1 to destroy the tasks at hand.

👎 But they really missed the mark. DeepSeek-R1 only got 1 or 2 out of 10 questions correct. Similarly, o1 was only at ~13% correct answers.

🧐 These results really surprised us. We thoroughly checked them, we even thought our APIs for DeepSeek were broken and colleagues Leandro Anton helped me start custom instances of R1 on our own H100s to make sure it worked well.
But there seemed to be no mistake. Reasoning LLMs actually did not seem that smart. Often, these models made basic mistakes, like forgetting the content of a folder that they had just explored, misspelling file names, or hallucinating data. Even though they do great at exploring webpages through several steps, the same level of multi-step planning seemed much harder to achieve when reasoning over files and data.

It seems like there's still lots of work to do in the Agents x Data space. Congrats to Adyen for this great benchmark, looking forward to see people proposing better agents! 🚀

Read more in the blog post 👉 https://huggingface.co/blog/dabstep
m-ric 
posted an update about 1 month ago
view post
Post
9760
Introducing 𝗼𝗽𝗲𝗻 𝗗𝗲𝗲𝗽-𝗥𝗲𝘀𝗲𝗮𝗿𝗰𝗵 by Hugging Face! 💥

OpenAI's latest agentic app Deep Research seems really good... But it's closed, as usual.

⏱️ So with a team of cracked colleagues, we set ourselves a 24hours deadline to replicate and open-source Deep Research! ⏱️

➡️ We built open-Deep-Research, an entirely open agent that can: navigate the web autonomously, scroll and search through pages, download and manipulate files, run calculation on data...

We aimed for the best performance: are the agent's answers really rigorous?

On GAIA benchmark, Deep Research had 67% accuracy on the validation set.
➡️ open Deep Research is at 55% (powered by o1), it is:
- the best pass@1 solution submitted
- the best open solution 💪💪

And it's only getting started ! Please jump in, drop PRs, and let's bring it to the top !

Read the blog post 👉 https://huggingface.co/blog/open-deep-research
m-ric 
posted an update about 1 month ago
view post
Post
3126
Now you can launch a code agent directly from your terminal!
✨ 𝚜𝚖𝚘𝚕𝚊𝚐𝚎𝚗𝚝 "𝚈𝚘𝚞𝚛 𝚝𝚊𝚜𝚔" directly launches a CodeAgent
▶️ This also works with web agents (replace 𝚜𝚖𝚘𝚕𝚊𝚐𝚎𝚗𝚝 with 𝚠𝚎𝚋𝚊𝚐𝚎𝚗𝚝) thanks to @merve !

💾 Another treat from smolagents release 1.7.0:
Now agents have a memory mechanism, enabling many possibilities like replaying the last run with 𝚊𝚐𝚎𝚗𝚝.𝚛𝚎𝚙𝚕𝚊𝚢(), thank you @clefourrier !

Check the release notes here 👉 https://github.com/huggingface/smolagents/releases/tag/v1.7.0
m-ric 
posted an update about 1 month ago
view post
Post
4077
𝗧𝗵𝗲 𝗛𝘂𝗯 𝘄𝗲𝗹𝗰𝗼𝗺𝗲𝘀 𝗲𝘅𝘁𝗲𝗿𝗻𝗮𝗹 𝗶𝗻𝗳𝗲𝗿𝗲𝗻𝗰𝗲 𝗽𝗿𝗼𝘃𝗶𝗱𝗲𝗿𝘀!

✅ Hosting our own inference was not enough: now the Hub 4 new inference providers: fal, Replicate, SambaNova Systems, & Together AI.

Check model cards on the Hub: you can now, in 1 click, use inference from various providers (cf video demo)

Their inference can also be used through our Inference API client. There, you can use either your custom provider key, or your HF token, then billing will be handled directly on your HF account, as a way to centralize all expenses.

💸 Also, PRO users get 2$ inference credits per month!

Read more in the announcement 👉 https://huggingface.co/blog/inference-providers
  • 1 reply
·
m-ric 
posted an update about 2 months ago
view post
Post
3306
Today we make the biggest release in smolagents so far: 𝘄𝗲 𝗲𝗻𝗮𝗯𝗹𝗲 𝘃𝗶𝘀𝗶𝗼𝗻 𝗺𝗼𝗱𝗲𝗹𝘀, 𝘄𝗵𝗶𝗰𝗵 𝗮𝗹𝗹𝗼𝘄𝘀 𝘁𝗼 𝗯𝘂𝗶𝗹𝗱 𝗽𝗼𝘄𝗲𝗿𝗳𝘂𝗹 𝘄𝗲𝗯 𝗯𝗿𝗼𝘄𝘀𝗶𝗻𝗴 𝗮𝗴𝗲𝗻𝘁𝘀! 🥳

Our agents can now casually open up a web browser, and navigate on it by scrolling, clicking elements on the webpage, going back, just like a user would.

The demo below shows Claude-3.5-Sonnet browsing GitHub for task: "Find how many commits the author of the current top trending repo did over last year."
Hi @mlabonne !

Go try it out, it's the most cracked agentic stuff I've seen in a while 🤯 (well, along with OpenAI's Operator who beat us by one day)

For more detail, read our announcement blog 👉 https://huggingface.co/blog/smolagents-can-see
The code for the web browser example is here 👉 https://github.com/huggingface/smolagents/blob/main/examples/vlm_web_browser.py
·
m-ric 
posted an update about 2 months ago
view post
Post
1376
𝗠𝗶𝗻𝗶𝗠𝗮𝘅'𝘀 𝗻𝗲𝘄 𝗠𝗼𝗘 𝗟𝗟𝗠 𝗿𝗲𝗮𝗰𝗵𝗲𝘀 𝗖𝗹𝗮𝘂𝗱𝗲-𝗦𝗼𝗻𝗻𝗲𝘁 𝗹𝗲𝘃𝗲𝗹 𝘄𝗶𝘁𝗵 𝟰𝗠 𝘁𝗼𝗸𝗲𝗻𝘀 𝗰𝗼𝗻𝘁𝗲𝘅𝘁 𝗹𝗲𝗻𝗴𝘁𝗵 💥

This work from Chinese startup @MiniMax-AI introduces a novel architecture that achieves state-of-the-art performance while handling context windows up to 4 million tokens - roughly 20x longer than current models. The key was combining lightning attention, mixture of experts (MoE), and a careful hybrid approach.

𝗞𝗲𝘆 𝗶𝗻𝘀𝗶𝗴𝗵𝘁𝘀:

🏗️ MoE with novel hybrid attention:
‣ Mixture of Experts with 456B total parameters (45.9B activated per token)
‣ Combines Lightning attention (linear complexity) for most layers and traditional softmax attention every 8 layers

🏆 Outperforms leading models across benchmarks while offering vastly longer context:
‣ Competitive with GPT-4/Claude-3.5-Sonnet on most tasks
‣ Can efficiently handle 4M token contexts (vs 256K for most other LLMs)

🔬 Technical innovations enable efficient scaling:
‣ Novel expert parallel and tensor parallel strategies cut communication overhead in half
‣ Improved linear attention sequence parallelism, multi-level padding and other optimizations achieve 75% GPU utilization (that's really high, generally utilization is around 50%)

🎯 Thorough training strategy:
‣ Careful data curation and quality control by using a smaller preliminary version of their LLM as a judge!

Overall, not only is the model impressive, but the technical paper is also really interesting! 📝
It has lots of insights including a great comparison showing how a 2B MoE (24B total) far outperforms a 7B model for the same amount of FLOPs.

Read it in full here 👉 MiniMax-01: Scaling Foundation Models with Lightning Attention (2501.08313)
Model here, allows commercial use <100M monthly users 👉 MiniMaxAI/MiniMax-Text-01
m-ric 
posted an update about 2 months ago
view post
Post
2549
𝗪𝗲'𝘃𝗲 𝗷𝘂𝘀𝘁 𝗿𝗲𝗹𝗲𝗮𝘀𝗲𝗱 𝘀𝗺𝗼𝗹𝗮𝗴𝗲𝗻𝘁𝘀 𝘃𝟭.𝟯.𝟬 🚀, and it comes with a major feature: you can now log agent runs using OpenTelemetry to inspect them afterwards! 📊

This interactive format is IMO much easier to inspect big multi-step runs than endless console logs.

The setup is very easy, in a few lines of code.

Find a tutorial here 👉 https://huggingface.co/docs/smolagents/tutorials/inspect_runs
  • 5 replies
·
m-ric 
posted an update about 2 months ago
view post
Post
675
𝗢𝗦-𝗚𝗲𝗻𝗲𝘀𝗶𝘀: 𝗻𝗲𝘄 𝗿𝗲𝘀𝗲𝗮𝗿𝗰𝗵 𝗽𝗮𝗽𝗲𝗿 𝗽𝗿𝗼𝗽𝗼𝘀𝗲𝘀 𝗮 𝗻𝗼𝘃𝗲𝗹 𝘁𝗿𝗮𝗶𝗻𝗶𝗻𝗴 𝗱𝗮𝘁𝗮 𝗴𝗲𝗻𝗲𝗿𝗮𝘁𝗶𝗼𝗻 𝗺𝗲𝘁𝗵𝗼𝗱 𝗳𝗼𝗿 𝗖𝗹𝗮𝘂𝗱𝗲-𝗖𝗼𝗺𝗽𝘂𝘁𝗲𝗿-𝗨𝘀𝗲-𝗹𝗶𝗸𝗲 𝗮𝗴𝗲𝗻𝘁𝘀, 𝘄𝗶𝘁𝗵 𝗶𝗺𝗽𝗿𝗲𝘀𝘀𝗶𝘃𝗲 𝗿𝗲𝘀𝘂𝗹𝘁𝘀! 🔥

The main bottleneck in building GUI agents it to find training data.
GUI Agent trajectories are not easy to get by. Crowdsourcing trajectories, then manually annotating them, could be an option, but at scale, it's hard to do

You could use synthetic data generation (ask 1000s small existing GUI agents to solve tasks, keep only successful runs). But then it's hard to come up with many high level-tasks.

➡️ Well, a novel technique was just published that creates a new promising paradigm for synthetic data generation: Shanghai AI Lab researchers propose OS-Genesis, a novel way to create training data for GUI agents that flips the traditional approach on its head. Instead of starting with predefined tasks and having humans or machines execute them, OS-Genesis first explores the interface naturally, then derives meaningful tasks from those interactions.

🔍 Exploration-driven vs task-driven approach:
‣ Instead of starting with tasks, OS-Genesis first explores GUIs by clicking and interacting
‣ It then reverse-engineers high-level tasks from successful interaction patterns
‣ This leads to more natural and diverse training data than predefined tasks

🎯 Novel reward model for trajectory quality:
‣ Rather than discarding incomplete trajectories, OS-Genesis scores them based on coherence and completion
‣ This preserves valuable partial successes that would otherwise be wasted

🏆 Superior results across environments:
‣ Nearly doubles performance on AndroidWorld (9.8% → 17.4%)

By the way, this field of GUI agents is still in infancy, so you can still make a difference with "low-cost" setups: their paper gets SOTA results with only 8xA100!

Read the paper here 👉 OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis (2412.19723)
m-ric 
posted an update 2 months ago
view post
Post
5152
Since I published it on GitHub a few days ago,
Hugging Face's new agentic library 𝘀𝗺𝗼𝗹𝗮𝗴𝗲𝗻𝘁𝘀 has gathered nearly 4k stars 🤯

➡️ But we are just getting started on agents: so we are hiring an ML Engineer to join me and double down on this effort!

The plan is to build GUI agents: agents that can act on your computer with mouse & keyboard, like Claude Computer Use.

We will make it work better, and fully open. ✨

Sounds like something you'd like to do? Apply here 👉 https://apply.workable.com/huggingface/j/AF1D4E3FEB/
·