ClinicalBERT-finetuned-ner-pablo-classifier-then-full-model

This model is a fine-tuned version of pabRomero/ClinicalBERT-finetuned-ner-pablo-just-classifier on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1259
  • Precision: 0.8091
  • Recall: 0.8039
  • F1: 0.8065
  • Accuracy: 0.9716

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1613 0.9996 652 0.1321 0.8184 0.7378 0.7760 0.9674
0.1048 1.9992 1304 0.1060 0.7999 0.7652 0.7822 0.9708
0.0745 2.9989 1956 0.1124 0.8016 0.7960 0.7988 0.9708
0.0349 3.9985 2608 0.1259 0.8091 0.8039 0.8065 0.9716

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu124
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for pabRomero/ClinicalBERT-finetuned-ner-pablo-classifier-then-full-model