pabRomero's picture
Update README.md
5582d7b verified
metadata
library_name: transformers
license: mit
base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: PubMedBERT-full-finetuned-ner-pablo
    results: []

PubMedBERT-full-finetuned-ner-pablo

This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext on the n2c2 2018 dataset for the paper https://arxiv.org/abs/2409.19467. It achieves the following results on the evaluation set:

  • Loss: 0.0712
  • Precision: 0.8087
  • Recall: 0.7954
  • F1: 0.8020
  • Accuracy: 0.9781

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 231 0.0934 0.7464 0.7652 0.7557 0.9730
No log 2.0 462 0.0730 0.7975 0.7915 0.7945 0.9774
0.2789 3.0 693 0.0713 0.8075 0.7924 0.7999 0.9777
0.2789 4.0 924 0.0712 0.8087 0.7954 0.8020 0.9781

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1