Model Card for Model ID
Model Details
Model Description
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by: [More Information Needed]
- Funded by [optional]: [More Information Needed]
- Shared by [optional]: [More Information Needed]
- Model type: [More Information Needed]
- Language(s) (NLP): [More Information Needed]
- License: [More Information Needed]
- Finetuned from model [optional]: [More Information Needed]
Model Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
Import important libraries
import transformers
import torch
from transformers import pipeline
import accelerate
Prepare model and tokenizer
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "pankaj9075rawat/DevsDoCode_LLama-3-8b-Uncensored"
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
Build Pipeline for text generation
pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
# model_kwargs={"torch_dtype": torch.bfloat16},
# device="cuda",
# device_map="auto",
# token=access_token
)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
Build response function
def get_response(
query, message_history=[], max_tokens=128, temperature=1.1, top_p=0.9
):
user_prompt = message_history + [{"role": "user", "content": query}]
prompt = pipeline.tokenizer.apply_chat_template(
user_prompt, tokenize=False, add_generation_prompt=True
)
# print("prompt before coversion: ", user_prompt)
# print("prompt after conversion: ", prompt)
outputs = pipeline(
prompt,
max_new_tokens=max_tokens,
eos_token_id=terminators,
do_sample=True,
temperature=temperature,
top_p=top_p,
)
response = outputs[0]["generated_text"][len(prompt):]
return response, user_prompt + [{"role": "assistant", "content": response}]
Build chat on notebook itself (define a system prompt variable)
convers = [{"role": "system", "content": system_instruction}]
def chat():
global convers
response, convers = get_init_AI_response(convers)
print("response:", response)
while True:
user_input = input("enter chat")
if user_input.lower() in ["exit", "quit"]:
return {"response": "Exiting the chatbot. Goodbye!"}
response, convers = get_response(user_input, convers)
print("response:", response)
chat()
[More Information Needed]
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed]
Software
[More Information Needed]
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]
- Downloads last month
- 17