Edit model card

Model Details

This model is a finetuned Meta-Llama-3-8b-Instruct model on the openassistant dataset. It was finetuned using PEFT, a library for efficiently adapting pre-trained language models to various downstream applications without fine-tuning all the model’s parameters.

Inference with PEFT Models:


from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel, PeftConfig

base_model = "meta-llama/Meta-Llama-3-8B"
adapter_model = "pantelnm/llama3-openassistant"

prompt = "Write your prompt here!"

model = AutoModelForCausalLM.from_pretrained(base_model)
model = PeftModel.from_pretrained(model, adapter_model)
tokenizer = AutoTokenizer.from_pretrained(base_model)

model = model.to("cuda")
model.eval()

inputs = tokenizer(prompt, return_tensors="pt")

with torch.no_grad():
    outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), max_new_tokens=10)
    print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0])

Model Trained Using AutoTrain

This model was trained using AutoTrain. For more information, please visit AutoTrain.

General Usage


from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "PATH_TO_THIS_REPO"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    device_map="auto",
    torch_dtype='auto'
).eval()

# Prompt content: "hi"
messages = [
    {"role": "user", "content": "hi"}
]

input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)

# Model response: "Hello! How can I assist you today?"
print(response)
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train pantelnm/llama3-openassistant