pasithbas159's picture
pasithbas159/multilabel-cls-model-v3
b7b975b verified
|
raw
history blame
3.74 kB
metadata
library_name: transformers
license: mit
base_model: xlm-roberta-large
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: multilabel_transfer_learning_transformer
    results: []

multilabel_transfer_learning_transformer

This model is a fine-tuned version of xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0217
  • F1: 0.9924
  • Roc Auc: 0.9955
  • Accuracy: 0.9887

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 123
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.5454 1.0 136 0.4135 0.0125 0.5030 0.0
0.3917 2.0 272 0.3582 0.2939 0.5855 0.0338
0.3405 3.0 408 0.3048 0.4862 0.6649 0.0827
0.2918 4.0 544 0.2753 0.5913 0.7250 0.1278
0.2531 5.0 680 0.2285 0.7261 0.8065 0.2406
0.214 6.0 816 0.1971 0.7684 0.8328 0.3233
0.181 7.0 952 0.1663 0.8199 0.8624 0.4173
0.1529 8.0 1088 0.1431 0.8591 0.8905 0.4774
0.1307 9.0 1224 0.1224 0.8979 0.9260 0.6090
0.1108 10.0 1360 0.1034 0.9195 0.9329 0.6955
0.0961 11.0 1496 0.0920 0.9435 0.9553 0.7744
0.0821 12.0 1632 0.0793 0.9559 0.9627 0.8346
0.0719 13.0 1768 0.0682 0.9636 0.9732 0.8759
0.0612 14.0 1904 0.0618 0.9651 0.9760 0.8947
0.0526 15.0 2040 0.0519 0.9757 0.9796 0.9135
0.0456 16.0 2176 0.0468 0.9778 0.9835 0.9248
0.0394 17.0 2312 0.0396 0.9854 0.9885 0.9586
0.0343 18.0 2448 0.0372 0.9855 0.9911 0.9586
0.0299 19.0 2584 0.0329 0.9854 0.9885 0.9586
0.0266 20.0 2720 0.0289 0.9887 0.9932 0.9887
0.0233 21.0 2856 0.0264 0.9874 0.9919 0.9812
0.0212 22.0 2992 0.0258 0.9887 0.9932 0.9887
0.02 23.0 3128 0.0242 0.9887 0.9932 0.9887
0.0177 24.0 3264 0.0217 0.9924 0.9955 0.9887
0.0162 25.0 3400 0.0200 0.9887 0.9932 0.9887
0.0146 26.0 3536 0.0201 0.9906 0.9951 0.9887
0.0136 27.0 3672 0.0192 0.9906 0.9951 0.9887
0.0127 28.0 3808 0.0169 0.9924 0.9955 0.9887

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1