We offer a TensorRT model in various precisions including int8, fp16, fp32, and mixed, converted from Deci-AI's YOLO-NAS-Pose pre-trained weights in PyTorch. This model is compatible with Jetson Orin Nano hardware.
Large
Model Name |
ONNX Precision |
TensorRT Preicion |
Throughput (TensorRT) |
yolo_nas_pose_l_fp16.onnx.best.engine |
FP16 |
FP32+FP16+INT8 |
46.7231 qps |
yolo_nas_pose_l_fp16.onnx.fp16.engine |
FP16 |
FP32+FP16 |
29.6093 qps |
yolo_nas_pose_l_fp32.onnx.best.engine |
FP32 |
FP32+FP16+INT8 |
47.4032 qps |
yolo_nas_pose_l_fp32.onnx.engine |
FP32 |
FP32 |
15.0654 qps |
yolo_nas_pose_l_fp32.onnx.fp16.engine |
FP32 |
FP32+FP16 |
29.0005 qps |
yolo_nas_pose_l_fp32.onnx.int8.engine |
FP32 |
FP32+INT8 |
47.9071 qps |
yolo_nas_pose_l_int8.onnx.best.engine |
INT8 |
FP32+FP16+INT8 |
36.9695 qps |
yolo_nas_pose_l_int8.onnx.int8.engine |
INT8 |
FP32+INT8 |
30.9676 qps |
Medium
Model Name |
ONNX Precision |
TensorRT Preicion |
Throughput (TensorRT) |
yolo_nas_pose_m_fp16.onnx.best.engine |
FP16 |
FP32+FP16+INT8 |
58.254 qps |
yolo_nas_pose_m_fp16.onnx.fp16.engine |
FP16 |
FP32+FP16 |
37.8547 qps |
yolo_nas_pose_m_fp32.onnx.best.engine |
FP32 |
FP32+FP16+INT8 |
58.0306 qps |
yolo_nas_pose_m_fp32.onnx.engine |
FP32 |
FP32 |
18.9603 qps |
yolo_nas_pose_m_fp32.onnx.fp16.engine |
FP32 |
FP32+FP16 |
37.193 qps |
yolo_nas_pose_m_fp32.onnx.int8.engine |
FP32 |
FP32+INT8 |
59.9746 qps |
yolo_nas_pose_m_int8.onnx.best.engine |
INT8 |
FP32+FP16+INT8 |
44.8046 qps |
yolo_nas_pose_m_int8.onnx.int8.engine |
INT8 |
FP32+INT8 |
38.6757 qps |
Small
Model Name |
ONNX Precision |
TensorRT Preicion |
Throughput (TensorRT) |
yolo_nas_pose_s_fp16.onnx.best.engine |
FP16 |
FP32+FP16+INT8 |
84.7072 qps |
yolo_nas_pose_s_fp16.onnx.fp16.engine |
FP16 |
FP32+FP16 |
66.0151 qps |
yolo_nas_pose_s_fp32.onnx.best.engine |
FP32 |
FP32+FP16+INT8 |
85.5718 qps |
yolo_nas_pose_s_fp32.onnx.engine |
FP32 |
FP32 |
33.5963 qps |
yolo_nas_pose_s_fp32.onnx.fp16.engine |
FP32 |
FP32+FP16 |
65.4357 qps |
yolo_nas_pose_s_fp32.onnx.int8.engine |
FP32 |
FP32+INT8 |
86.3202 qps |
yolo_nas_pose_s_int8.onnx.best.engine |
INT8 |
FP32+FP16+INT8 |
74.2494 qps |
yolo_nas_pose_s_int8.onnx.int8.engine |
INT8 |
FP32+INT8 |
63.7546 qps |
Nano
Model Name |
ONNX Precision |
TensorRT Preicion |
Throughput (TensorRT) |
yolo_nas_pose_s_fp16.onnx.best.engine |
FP16 |
FP32+FP16+INT8 |
91.8287 qps |
yolo_nas_pose_s_fp16.onnx.fp16.engine |
FP16 |
FP32+FP16 |
85.4187 qps |
yolo_nas_pose_s_fp32.onnx.best.engine |
FP32 |
FP32+FP16+INT8 |
105.519 qps |
yolo_nas_pose_s_fp32.onnx.engine |
FP32 |
FP32 |
47.8265 qps |
yolo_nas_pose_s_fp32.onnx.fp16.engine |
FP32 |
FP32+FP16 |
82.3834 qps |
yolo_nas_pose_s_fp32.onnx.int8.engine |
FP32 |
FP32+INT8 |
88.0719 qps |
yolo_nas_pose_s_int8.onnx.best.engine |
INT8 |
FP32+FP16+INT8 |
80.8271 qps |
yolo_nas_pose_s_int8.onnx.int8.engine |
INT8 |
FP32+INT8 |
74.2658 qps |