peulsilva's picture
Add new SentenceTransformer model
7f852f0 verified
---
base_model: whaleloops/phrase-bert
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:100000
- loss:CosineSimilarityLoss
widget:
- source_sentence: 'RT @AnfieldBond: Xherdan Shaqiri, who has been linked with a summer
move to Liverpool, has just scored a hat-trick against Honduras. #LFC'
sentences:
- Honduras is fucking it up for ecuador
- Some strike Shakira. Just need a couple more one from Honduras.
- "RT @2014WorIdCup: HALF TIME: France and Ecuador 0-0. \nSwitzerland leads Honduras\
\ 2-0."
- source_sentence: Yall watching the Honduras game when im watching france😂😂 Honduras
poo
sentences:
- 'I’m following Honduras versus Switzerland in the FIFA Global Stadium #HONSUI
#worldcup #joinin'
- 'RT @SportsCenter: That''s it for Group E! France wins group after 0-0 tie, Switzerland
advances thanks to 3-0 win. Ecuador and Honduras are …'
- 'RT @worldsoccershop: HAT TRICK FOR @XS_11official! #HON 0-3 #SUI. #WorldCup2014'
- source_sentence: 'RT @rffuk: Xherdan Shaqiri just scored this absolute wonder goal
to put #SWI 1-0 ahead v #HON. What a strike son! https://t.co/vHuIPCucpV'
sentences:
- 'RT @trueSCRlife: If #Shaqiri scores vs #HON we''ll give away a pair of Magistas.
Follow & RT to enter. Winner DMed! #HONvsSUI http://t.co/EG…'
- 'RT @soccerdotcom: Los Catrachos! Follow @soccerdotcom and RT for the chance to
win a Joma #HON Jersey signed by the team! http://t.co/2NTfw…'
- 'Shaqiri has 2 goals in the first half! Can he score the first hat trick of the
#WorldCup? #HON #SUI http://t.co/M21zGv0qw4'
- source_sentence: Honduras copped the fendi
sentences:
- 'RT @worldsoccershop: If #Costly scores for #HON we''ll give away a pair of adidas
#Nitrocharge. Follow & RT to enter! #allin or nothing. htt…'
- '#SUI get a second against #HON. Shaqiri scores once again!
#iMOTM?'
- 'RT @soccerdotcom: Los Catrachos! Follow @soccerdotcom and RT for the chance to
win a Joma #HON Jersey signed by the team! http://t.co/2NTfw…'
- source_sentence: Honduras is technically still in the World Cup and Italy plus England
are out means Honduras is better than them😂
sentences:
- wtf Honduras has to win 😩
- 'Honduras still better than the #CGHS JV Female Soccer Team 😂😂'
- 'RT @iambolar: FT:Honduras 0-3 Switzerland. Shaqiri nets d 50th hat trick in #WorldCup
history as Switzerland qualify 4d next round. http://…'
model-index:
- name: SentenceTransformer based on whaleloops/phrase-bert
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: validation
type: validation
metrics:
- type: pearson_cosine
value: 0.14803022870400553
name: Pearson Cosine
- type: spearman_cosine
value: 0.1536611594776976
name: Spearman Cosine
---
# SentenceTransformer based on whaleloops/phrase-bert
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [whaleloops/phrase-bert](https://huggingface.co/whaleloops/phrase-bert). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [whaleloops/phrase-bert](https://huggingface.co/whaleloops/phrase-bert) <!-- at revision 6f68f4dc2d28aadefa038c79023dc7dfd51f6495 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': None}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("peulsilva/sentence-transformer-trained-tweet")
# Run inference
sentences = [
'Honduras is technically still in the World Cup and Italy plus England are out means Honduras is better than them😂',
'RT @iambolar: FT:Honduras 0-3 Switzerland. Shaqiri nets d 50th hat trick in #WorldCup history as Switzerland qualify 4d next round. http://…',
'Honduras still better than the #CGHS JV Female Soccer Team 😂😂',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `validation`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.148 |
| **spearman_cosine** | **0.1537** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 100,000 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 6 tokens</li><li>mean: 37.81 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 38.01 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.56</li><li>max: 1.0</li></ul> |
* Samples:
| sentence_0 | sentence_1 | label |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
| <code>Early lead for #SUI over #HON thanks to Shaqiri taking a page out of Robben's book. He paid attention during Bayern practices. #ShaqAttaq ⚽️</code> | <code>RT @soccerdotcom: Los Catrachos! Follow @soccerdotcom and RT for the chance to win a Joma #HON Jersey signed by the team! http://t.co/2NTfw…</code> | <code>0.0</code> |
| <code>RT @RTEsoccer: Group E result: #HON 0-3 #SUI. Shaqiri the hat-trick hero as the Swiss progress: http://t.co/fZYw9NFghO #rteworldcup http://…</code> | <code>RT @trueSCRlife: If #Shaqiri scores vs #HON we'll give away a pair of Magistas. Follow & RT to enter. Winner DMed! #HONvsSUI http://t.co/EG…</code> | <code>1.0</code> |
| <code>RT @TheSCRLife: If #HON wins we’ll give away a pair of Superflys. FOLLOW & RETWEET. Not following?Won’t win. (I’m checking). http://t.co/xw…</code> | <code>Yup Honduras say goodbye lll</code> | <code>0.0</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `num_train_epochs`: 1
- `fp16`: True
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss | validation_spearman_cosine |
|:------:|:----:|:-------------:|:--------------------------:|
| 0.6394 | 500 | 0.2429 | - |
| 1.0 | 782 | - | 0.1537 |
### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.3.0
- Transformers: 4.45.0.dev0
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->