philschmid's picture
philschmid HF staff
Update README.md
cc95e1a
metadata
license: apache-2.0
tags:
  - token-classification
datasets:
  - wikiann-conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilroberta-base-ner-wikiann-conll2003-3-class
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: wikiann-conll2003
          type: wikiann-conll2003
        metrics:
          - name: Precision
            type: precision
            value: 0.9624757386241104
          - name: Recall
            type: recall
            value: 0.9667497021553124
          - name: F1
            type: f1
            value: 0.964607986167396
          - name: Accuracy
            type: accuracy
            value: 0.9913626461292995

distilroberta-base-ner-wikiann-conll2003-3-class

This model is a fine-tuned version of distilroberta-base on the wikiann and conll2003 dataset. It consists out of the classes of wikiann.

O (0), B-PER (1), I-PER (2), B-ORG (3), I-ORG (4) B-LOC (5), I-LOC (6).

eval F1-Score: 96,25 (merged dataset)
test F1-Score: 92,41 (merged dataset)

Model Usage

from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline

tokenizer = AutoTokenizer.from_pretrained("philschmid/distilroberta-base-ner-wikiann-conll2003-3-class")
model = AutoModelForTokenClassification.from_pretrained("philschmid/distilroberta-base-ner-wikiann-conll2003-3-class")

nlp = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
example = "My name is Philipp and live in Germany"

nlp(example)

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.9086903597787154e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5.0
  • mixed_precision_training: Native AMP

Training results

It achieves the following results on the evaluation set:

  • Loss: 0.0520
  • Precision: 0.9625
  • Recall: 0.9667
  • F1: 0.9646
  • Accuracy: 0.9914

It achieves the following results on the test set:

  • Loss: 0.141
  • Precision: 0.917
  • Recall: 0.9313
  • F1: 0.9241
  • Accuracy: 0.9807

Framework versions

  • Transformers 4.6.1
  • Pytorch 1.8.1+cu101
  • Datasets 1.6.2
  • Tokenizers 0.10.3