Model Card
This is Owlet-Phi-2-Audio.
Owlet is a family of lightweight but powerful multimodal models.
We provide Owlet-phi-2-audio, which is built upon SigLIP and Phi-2 and Whisper. This model supports both audio and visual signals from video data as input, and performs competitevely on the task of Video Question-Answering(QA). The training procedure and architecture details are publish here.
Quickstart
Here we show a code snippet to show you how to use the model with transformers. It accepts a mp4 video file, and wav audio file as the input, and generates the answer to the user query.
Before running the snippet, you need to install the following dependencies:
pip install torch transformers accelerate pillow decord librosa
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import warnings
import librosa
# disable some warnings
transformers.logging.set_verbosity_error()
transformers.logging.disable_progress_bar()
warnings.filterwarnings('ignore')
# set device
device = 'cuda' # or cpu
torch.set_default_device(device)
# create model
print('Loading the model...')
model = AutoModelForCausalLM.from_pretrained(
'phronetic-ai/owlet-phi-2-audio',
torch_dtype=torch.float16, # float32 for cpu
device_map='auto',
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(
'phronetic-ai/owlet-phi-2-audio',
trust_remote_code=True)
print('Model loaded. Processing the query...')
# text prompt
prompt = 'What is happening in the video?'
text = f"A chat between a curious user and an artificial intelligence assistant. \
The assistant gives helpful, detailed, and polite answers to the user's questions. \
USER: <audio>\n<image>\n{prompt} ASSISTANT:"
input_ids = tokenizer(text, return_tensors='pt').input_ids.to(model.device)
# video and audio file path
video_file_path = '/data/sample_files/sample.mp4'
audio_file_path = '/data/sample_files/sample.wav'
image_tensor, audio_tensor = (tensor.to(model.device, dtype=model.dtype) for tensor in model.process(video_file_path, audio_file_path, model.config))
# passing token indices
IMAGE_TOKEN_INDEX = tokenizer('<image>').input_ids[0]
AUDIO_TOKEN_INDEX = tokenizer('<audio>').input_ids[0]
# generate
output_ids = model.generate(
input_ids,
images=image_tensor,
audio=audio_tensor,
IMAGE_TOKEN_INDEX=IMAGE_TOKEN_INDEX,
AUDIO_TOKEN_INDEX=AUDIO_TOKEN_INDEX,
max_new_tokens=100,
use_cache=True)[0]
print(f'Response: {tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()}')
- Downloads last month
- 15