pnr-svc's picture
End of training
a7253f4 verified
metadata
base_model: distilbert-base-uncased
library_name: peft
license: apache-2.0
metrics:
  - precision
  - recall
  - f1
  - accuracy
tags:
  - generated_from_trainer
model-index:
  - name: distilbert-ner-lorafinetune-runs-v1
    results: []

distilbert-ner-lorafinetune-runs-v1

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0735
  • Precision: 0.9638
  • Recall: 0.9778
  • F1: 0.9708
  • Accuracy: 0.9888

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0808 1.0 2643 0.1186 0.9399 0.9629 0.9513 0.9818
0.0648 2.0 5286 0.0807 0.9556 0.9736 0.9645 0.9868
0.0366 3.0 7929 0.0761 0.9611 0.9770 0.9690 0.9883
0.0306 4.0 10572 0.0735 0.9638 0.9778 0.9708 0.9888

Framework versions

  • PEFT 0.12.0
  • Transformers 4.43.3
  • Pytorch 2.4.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1